Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
medRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38978643

RESUMEN

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) is a fatal neurodegenerative disorder with only a limited number of risk loci identified. We report our comprehensive genome-wide association study as part of the International FTLD-TDP Whole-Genome Sequencing Consortium, including 985 cases and 3,153 controls, and meta-analysis with the Dementia-seq cohort, compiled from 26 institutions/brain banks in the United States, Europe and Australia. We confirm UNC13A as the strongest overall FTLD-TDP risk factor and identify TNIP1 as a novel FTLD-TDP risk factor. In subgroup analyses, we further identify for the first time genome-wide significant loci specific to each of the three main FTLD-TDP pathological subtypes (A, B and C), as well as enrichment of risk loci in distinct tissues, brain regions, and neuronal subtypes, suggesting distinct disease aetiologies in each of the subtypes. Rare variant analysis confirmed TBK1 and identified VIPR1 , RBPJL , and L3MBTL1 as novel subtype specific FTLD-TDP risk genes, further highlighting the role of innate and adaptive immunity and notch signalling pathway in FTLD-TDP, with potential diagnostic and novel therapeutic implications.

2.
Acta Neuropathol ; 147(1): 94, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833073

RESUMEN

A recent large genome-wide association study has identified EGFR (encoding the epidermal growth factor EGFR) as a new genetic risk factor for late-onset AD. SHIP2, encoded by INPPL1, is taking part in the signalling and interactome of several growth factor receptors, such as the EGFR. While INPPL1 has been identified as one of the most significant genes whose RNA expression correlates with cognitive decline, the potential alteration of SHIP2 expression and localization during the progression of AD remains largely unknown. Here we report that gene expression of both EGFR and INPPL1 was upregulated in AD brains. SHIP2 immunoreactivity was predominantly detected in plaque-associated astrocytes and dystrophic neurites and its increase was correlated with amyloid load in the brain of human AD and of 5xFAD transgenic mouse model of AD. While mRNA of INPPL1 was increased in AD, SHIP2 protein undergoes a significant solubility change being depleted from the soluble fraction of AD brain homogenates and co-enriched with EGFR in the insoluble fraction. Using FRET-based flow cytometry biosensor assay for tau-tau interaction, overexpression of SHIP2 significantly increased the FRET signal while siRNA-mediated downexpression of SHIP2 significantly decreased FRET signal. Genetic association analyses suggest that some variants in INPPL1 locus are associated with the level of CSF pTau. Our data support the hypothesis that SHIP2 is an intermediate key player of EGFR and AD pathology linking amyloid and tau pathologies in human AD.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Progresión de la Enfermedad , Receptores ErbB , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expresión Génica , Ratones Transgénicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Solubilidad , Proteínas tau/metabolismo , Proteínas tau/genética
3.
Genome Med ; 15(1): 79, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794492

RESUMEN

BACKGROUND: Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified several risk loci, but many remain unknown. Cerebrospinal fluid (CSF) biomarkers may aid in gene discovery and we previously demonstrated that six CSF biomarkers (ß-amyloid, total/phosphorylated tau, NfL, YKL-40, and neurogranin) cluster into five principal components (PC), each representing statistically independent biological processes. Here, we aimed to (1) identify common genetic variants associated with these CSF profiles, (2) assess the role of associated variants in AD pathophysiology, and (3) explore potential sex differences. METHODS: We performed GWAS for each of the five biomarker PCs in two multi-center studies (EMIF-AD and ADNI). In total, 973 participants (n = 205 controls, n = 546 mild cognitive impairment, n = 222 AD) were analyzed for 7,433,949 common SNPs and 19,511 protein-coding genes. Structural equation models tested whether biomarker PCs mediate genetic risk effects on AD, and stratified and interaction models probed for sex-specific effects. RESULTS: Five loci showed genome-wide significant association with CSF profiles, two were novel (rs145791381 [inflammation] and GRIN2D [synaptic functioning]) and three were previously described (APOE, TMEM106B, and CHI3L1). Follow-up analyses of the two novel signals in independent datasets only supported the GRIN2D locus, which contains several functionally interesting candidate genes. Mediation tests indicated that variants in APOE are associated with AD status via processes related to amyloid and tau pathology, while markers in TMEM106B and CHI3L1 are associated with AD only via neuronal injury/inflammation. Additionally, seven loci showed sex-specific associations with AD biomarkers. CONCLUSIONS: These results suggest that pathway and sex-specific analyses can improve our understanding of AD genetics and may contribute to precision medicine.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Estudio de Asociación del Genoma Completo , Proteínas tau/genética , Biomarcadores , Inflamación , Apolipoproteínas E/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética
4.
Proc Natl Acad Sci U S A ; 120(36): e2302720120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37643212

RESUMEN

Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aß42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.


Asunto(s)
Enfermedad de Alzheimer , Cadenas HLA-DRB1 , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/genética , Antígenos de Histocompatibilidad , Antígenos HLA , Cadenas HLA-DRB1/genética , Enfermedad de Parkinson/genética
5.
Ann Neurol ; 94(4): 713-726, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37486023

RESUMEN

OBJECTIVE: The objective of this study was to aggregate data for the first genomewide association study meta-analysis of cluster headache, to identify genetic risk variants, and gain biological insights. METHODS: A total of 4,777 cases (3,348 men and 1,429 women) with clinically diagnosed cluster headache were recruited from 10 European and 1 East Asian cohorts. We first performed an inverse-variance genomewide association meta-analysis of 4,043 cases and 21,729 controls of European ancestry. In a secondary trans-ancestry meta-analysis, we included 734 cases and 9,846 controls of East Asian ancestry. Candidate causal genes were prioritized by 5 complementary methods: expression quantitative trait loci, transcriptome-wide association, fine-mapping of causal gene sets, genetically driven DNA methylation, and effects on protein structure. Gene set and tissue enrichment analyses, genetic correlation, genetic risk score analysis, and Mendelian randomization were part of the downstream analyses. RESULTS: The estimated single nucleotide polymorphism (SNP)-based heritability of cluster headache was 14.5%. We identified 9 independent signals in 7 genomewide significant loci in the primary meta-analysis, and one additional locus in the trans-ethnic meta-analysis. Five of the loci were previously known. The 20 genes prioritized as potentially causal for cluster headache showed enrichment to artery and brain tissue. Cluster headache was genetically correlated with cigarette smoking, risk-taking behavior, attention deficit hyperactivity disorder (ADHD), depression, and musculoskeletal pain. Mendelian randomization analysis indicated a causal effect of cigarette smoking intensity on cluster headache. Three of the identified loci were shared with migraine. INTERPRETATION: This first genomewide association study meta-analysis gives clues to the biological basis of cluster headache and indicates that smoking is a causal risk factor. ANN NEUROL 2023;94:713-726.


Asunto(s)
Cefalalgia Histamínica , Trastornos Migrañosos , Masculino , Humanos , Femenino , Cefalalgia Histamínica/epidemiología , Cefalalgia Histamínica/genética , Factores de Riesgo , Estudio de Asociación del Genoma Completo , Fumar/efectos adversos , Fumar/genética , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad/genética
6.
JAMA Netw Open ; 6(5): e2313734, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37195665

RESUMEN

Importance: An estimated 40% of dementia is potentially preventable by modifying 12 risk factors throughout the life course. However, robust evidence for most of these risk factors is lacking. Effective interventions should target risk factors in the causal pathway to dementia. Objective: To comprehensively disentangle potentially causal aspects of modifiable risk factors for Alzheimer disease (AD) to inspire new drug targeting and improved prevention. Design, Setting, and Participants: This genetic association study was conducted using 2-sample univariable and multivariable mendelian randomization. Independent genetic variants associated with modifiable risk factors were selected as instrumental variables from genomic consortia. Outcome data for AD were obtained from the European Alzheimer & Dementia Biobank (EADB), generated on August 31, 2021. Main analyses were conducted using the EADB clinically diagnosed end point data. All analyses were performed between April 12 and October 27, 2022. Exposures: Genetically determined modifiable risk factors. Main Outcomes and Measures: Odds ratios (ORs) and 95% CIs for AD were calculated per 1-unit change of genetically determined risk factors. Results: The EADB-diagnosed cohort included 39 106 participants with clinically diagnosed AD and 401 577 control participants without AD. The mean age ranged from 72 to 83 years for participants with AD and 51 to 80 years for control participants. Among participants with AD, 54% to 75% were female, and among control participants, 48% to 60% were female. Genetically determined high-density lipoprotein (HDL) cholesterol concentrations were associated with increased odds of AD (OR per 1-SD increase, 1.10 [95% CI, 1.05-1.16]). Genetically determined high systolic blood pressure was associated with increased risk of AD after adjusting for diastolic blood pressure (OR per 10-mm Hg increase, 1.22 [95% CI, 1.02-1.46]). In a second analysis to minimize bias due to sample overlap, the entire UK Biobank was excluded from the EADB consortium; odds for AD were similar for HDL cholesterol (OR per 1-SD unit increase, 1.08 [95% CI, 1.02-1.15]) and systolic blood pressure after adjusting for diastolic blood pressure (OR per 10-mm Hg increase, 1.23 [95% CI, 1.01-1.50]). Conclusions and Relevance: This genetic association study found novel genetic associations between high HDL cholesterol concentrations and high systolic blood pressure with higher risk of AD. These findings may inspire new drug targeting and improved prevention implementation.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Masculino , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , HDL-Colesterol , Factores de Riesgo , Causalidad
7.
Nat Neurosci ; 26(1): 150-162, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36482247

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressively fatal neurodegenerative disease affecting motor neurons in the brain and spinal cord. In this study, we investigated gene expression changes in ALS via RNA sequencing in 380 postmortem samples from cervical, thoracic and lumbar spinal cord segments from 154 individuals with ALS and 49 control individuals. We observed an increase in microglia and astrocyte gene expression, accompanied by a decrease in oligodendrocyte gene expression. By creating a gene co-expression network in the ALS samples, we identified several activated microglia modules that negatively correlate with retrospective disease duration. We mapped molecular quantitative trait loci and found several potential ALS risk loci that may act through gene expression or splicing in the spinal cord and assign putative cell types for FNBP1, ACSL5, SH3RF1 and NFASC. Finally, we outline how common genetic variants associated with splicing of C9orf72 act as proxies for the well-known repeat expansion, and we use the same mechanism to suggest ATXN3 as a putative risk gene.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Estudios Retrospectivos , Transcriptoma , Médula Espinal/metabolismo
8.
Alzheimers Dement ; 19(6): 2317-2331, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36464806

RESUMEN

INTRODUCTION: Despite increasing evidence of a role of rare genetic variation in the risk of Alzheimer's disease (AD), limited attention has been paid to its contribution to AD-related biomarker traits indicative of AD-relevant pathophysiological processes. METHODS: We performed whole-exome gene-based rare-variant association studies (RVASs) of 17 AD-related traits on whole-exome sequencing (WES) data generated in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study (n = 450) and whole-genome sequencing (WGS) data from ADNI (n = 808). RESULTS: Mutation screening revealed a novel probably pathogenic mutation (PSEN1 p.Leu232Phe). Gene-based RVAS revealed the exome-wide significant contribution of rare coding variation in RBKS and OR7A10 to cognitive performance and protection against left hippocampal atrophy, respectively. DISCUSSION: The identification of these novel gene-trait associations offers new perspectives into the role of rare coding variation in the distinct pathophysiological processes culminating in AD, which may lead to identification of novel therapeutic and diagnostic targets.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico , Exoma/genética , Estudios de Asociación Genética , Fenotipo , Biomarcadores
9.
Cells ; 11(24)2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36552756

RESUMEN

Genome-wide association studies (GWAS) have identified the PICALM (Phosphatidylinositol binding clathrin-assembly protein) gene as the most significant genetic susceptibility locus after APOE and BIN1. PICALM is a clathrin-adaptor protein that plays a critical role in clathrin-mediated endocytosis and autophagy. Since the effects of genetic variants of PICALM as AD-susceptibility loci have been confirmed by independent genetic studies in several distinct cohorts, there has been a number of in vitro and in vivo studies attempting to elucidate the underlying mechanism by which PICALM modulates AD risk. While differential modulation of APP processing and Aß transcytosis by PICALM has been reported, significant effects of PICALM modulation of tau pathology progression have also been evidenced in Alzheimer's disease models. In this review, we summarize the current knowledge about PICALM, its physiological functions, genetic variants, post-translational modifications and relevance to AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Ensamble de Clatrina Monoméricas , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Clatrina/metabolismo , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteínas de Ensamble de Clatrina Monoméricas/genética , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo
10.
Acta Neuropathol ; 144(5): 821-842, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36066633

RESUMEN

Amyloid-beta 42 (Aß42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aß42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aß42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquídeo , Proteínas de Ciclo Celular , Humanos , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/genética
11.
JAMA Neurol ; 79(7): 652-663, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35639372

RESUMEN

Importance: The APOE ε2 and APOE ε4 alleles are the strongest protective and risk-increasing, respectively, genetic variants for late-onset Alzheimer disease (AD). However, the mechanisms linking APOE to AD-particularly the apoE protein's role in AD pathogenesis and how this is affected by APOE variants-remain poorly understood. Identifying missense variants in addition to APOE ε2 and APOE ε4 could provide critical new insights, but given the low frequency of additional missense variants, AD genetic cohorts have previously been too small to interrogate this question robustly. Objective: To determine whether rare missense variants on APOE are associated with AD risk. Design, Setting, and Participants: Association with case-control status was tested in a sequenced discovery sample (stage 1) and followed up in several microarray imputed cohorts as well as the UK Biobank whole-exome sequencing resource using a proxy-AD phenotype (stages 2 and 3). This study combined case-control, family-based, population-based, and longitudinal AD-related cohorts that recruited referred and volunteer participants. Stage 1 included 37 409 nonunique participants of European or admixed European ancestry, with 11 868 individuals with AD and 11 934 controls passing analysis inclusion criteria. In stages 2 and 3, 475 473 participants were considered across 8 cohorts, of which 84 513 individuals with AD and proxy-AD and 328 372 controls passed inclusion criteria. Selection criteria were cohort specific, and this study was performed a posteriori on individuals who were genotyped. Among the available genotypes, 76 195 were excluded. All data were retrieved between September 2015 and November 2021 and analyzed between April and November 2021. Main Outcomes and Measures: In primary analyses, the AD risk associated with each missense variant was estimated, as appropriate, with either linear mixed-model regression or logistic regression. In secondary analyses, associations were estimated with age at onset using linear mixed-model regression and risk of conversion to AD using competing-risk regression. Results: A total of 544 384 participants were analyzed in the primary case-control analysis; 312 476 (57.4%) were female, and the mean (SD; range) age was 64.9 (15.2; 40-110) years. Two missense variants were associated with a 2-fold to 3-fold decreased AD risk: APOE ε4 (R251G) (odds ratio, 0.44; 95% CI, 0.33-0.59; P = 4.7 × 10-8) and APOE ε3 (V236E) (odds ratio, 0.37; 95% CI, 0.25-0.56; P = 1.9 × 10-6). Additionally, the cumulative incidence of AD in carriers of these variants was found to grow more slowly with age compared with noncarriers. Conclusions and Relevance: In this genetic association study, a novel variant associated with AD was identified: R251G always coinherited with ε4 on the APOE gene, which mitigates the ε4-associated AD risk. The protective effect of the V236E variant, which is always coinherited with ε3 on the APOE gene, was also confirmed. The location of these variants confirms that the carboxyl-terminal portion of apoE plays an important role in AD pathogenesis. The large risk reductions reported here suggest that protein chemistry and functional assays of these variants should be pursued, as they have the potential to guide drug development targeting APOE.


Asunto(s)
Enfermedad de Alzheimer , Edad de Inicio , Alelos , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Femenino , Genotipo , Humanos , Masculino
12.
Nat Genet ; 54(4): 412-436, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379992

RESUMEN

Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/psicología , Estudio de Asociación del Genoma Completo , Humanos , Proteínas tau/genética
13.
Mol Psychiatry ; 27(4): 1990-1999, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35173266

RESUMEN

Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (ß-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/genética , Biomarcadores , Proteína 1 Similar a Quitinasa-3/genética , Proteínas de Unión al ADN , Ácido Ditionitrobenzoico , Humanos , Inflamación/genética , Péptidos y Proteínas de Señalización Intercelular , Neurogranina/genética , Factores de Transcripción , Proteínas tau
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...