Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949654

RESUMEN

MAX phase is a family of ceramic compounds, typically known for their metallic properties. However, we show here that some of them may be narrow bandgap semiconductors. Using a series of first-principles calculations, we have investigated the electronic structures of 861 dynamically stable MAX phases. Notably, Sc2SC, Y2SC, Y2SeC, Sc3AuC2, and Y3AuC2 have been identified as semiconductors with band gaps ranging from 0.2 to 0.5 eV. Furthermore, we have assessed the thermodynamic stability of these systems by generating ternary phase diagrams utilizing evolutionary algorithm techniques. Their dynamic stabilities are confirmed by phonon calculations. Additionally, we have explored the potential thermoelectric efficiencies of these materials by combining Boltzmann transport theory with first-principles calculations. The relaxation times are estimated using scattering theory. The zT coefficients for the aforementioned systems fall within the range of 0.5 to 2.5 at temperatures spanning from 300 to 700 K, indicating their suitability for high-temperature thermoelectric applications.

2.
J Chem Phys ; 160(20)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804494

RESUMEN

We have applied path-integral molecular dynamics simulations to investigate the impact of nuclear quantum effects on the vibrational dynamics of water molecules at the water-air interface. The instantaneous fluctuations in the frequencies of the O-H stretch modes are calculated using the wavelet method of time series analysis, while the time scales of vibrational spectral diffusion are determined from frequency-time correlation functions and joint probability distributions. We find that the inclusion of nuclear quantum effects leads not only to a redshift in the vibrational frequency distribution by about 120 cm-1 for both the bulk and interfacial water molecules but also to an acceleration of the vibrational dynamics at the water-air interface by as much as 35%. In addition, a blueshift of about 45 cm-1 is seen in the vibrational frequency distribution of interfacial water molecules compared to that of the bulk. Furthermore, the dynamics of water molecules beyond the topmost molecular layer was found to be rather similar to that of bulk water.

3.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38189615

RESUMEN

Disordered molecular systems, such as amorphous catalysts, organic thin films, electrolyte solutions, and water, are at the cutting edge of computational exploration at present. Traditional simulations of such systems at length scales relevant to experiments in practice require a compromise between model accuracy and quality of sampling. To address this problem, we have developed an approach based on generative machine learning called the Morphological Autoregressive Protocol (MAP), which provides computational access to mesoscale disordered molecular configurations at linear cost at generation for materials in which structural correlations decay sufficiently rapidly. The algorithm is implemented using an augmented PixelCNN deep learning architecture that, as we previously demonstrated, produces excellent results in 2 dimensions (2D) for mono-elemental molecular systems. Here, we extend our implementation to multi-elemental 3D and demonstrate performance using water as our test system in two scenarios: (1) liquid water and (2) samples conditioned on the presence of pre-selected motifs. We trained the model on small-scale samples of liquid water produced using path-integral molecular dynamics simulations, including nuclear quantum effects under ambient conditions. MAP-generated water configurations are shown to accurately reproduce the properties of the training set and to produce stable trajectories when used as initial conditions in quantum dynamics simulations. We expect our approach to perform equally well on other disordered molecular systems in which structural correlations decay sufficiently fast while offering unique advantages in situations when the disorder is quenched rather than equilibrated.

4.
Commun Chem ; 6(1): 280, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104228

RESUMEN

The water surface provides a highly effective platform for the synthesis of two-dimensional polymers (2DP). In this study, we present an efficient on-water surface synthesis of crystalline monolayer 2D polyimide (2DPI) through the imidization reaction between tetra (4-aminophenyl) porphyrin (M1) and perylenetracarboxylic dianhydride (M2), resulting in excellent stability and coverage over a large area (tens of cm2). We further fabricate innovative organic-inorganic hybrid van der Waals heterostructures (vdWHs) by combining with exfoliated few-layer molybdenum sulfide (MoS2). High-resolution transmission electron microscopy (HRTEM) reveals face-to-face stacking between MoS2 and 2DPI within the vdWH. This stacking configuration facilitates remarkable charge transfer and noticeable n-type doping effects from monolayer 2DPI to MoS2, as corroborated by Raman spectroscopy, photoluminescence measurements, and field-effect transistor (FET) characterizations. Notably, the 2DPI-MoS2 vdWH exhibits an impressive electron mobility of 50 cm2/V·s, signifying a substantial improvement over pristine MoS2 (8 cm2/V·s). This study unveils the immense potential of integrating 2D polymers to enhance semiconductor device functionality through tailored vdWHs, thereby opening up exciting new avenues for exploring unique interfacial physical phenomena.

5.
Nat Commun ; 14(1): 7684, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001091

RESUMEN

Graphitic carbon nitride is widely studied in organic photoredox catalysis. Reductive quenching of carbon nitride excited state is postulated in many photocatalytic transformations. However, the reactivity of this species in the turn over step is less explored. In this work, we investigate electron and proton transfer from carbon nitride that is photocharged to a various extent, while the negative charge is compensated either by protons or ammonium cations. Strong stabilization of electrons by ammonium cations makes proton-coupled electron transfer uphill, and affords air-stable persistent carbon nitride radicals. In carbon nitrides, which are photocharged to a smaller extent, protons do not stabilize electrons, which results in spontaneous charge transfer to oxidants. Facile proton-coupled electron transfer is a key step in the photocatalytic oxidative-reductive cascade - tetramerization of benzylic amines. The feasibility of proton-coupled electron transfer is modulated by adjusting the extent of carbon nitride photocharging, type of counterion and temperature.

6.
Angew Chem Int Ed Engl ; 62(39): e202305733, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37522820

RESUMEN

Carbohydrates are the most abundant organic material on Earth and the structural "material of choice" in many living systems. Nevertheless, design and engineering of synthetic carbohydrate materials presently lag behind that for protein and nucleic acids. Bottom-up engineering of carbohydrate materials demands an atomic-level understanding of their molecular structures and interactions in condensed phases. Here, high-resolution scanning tunneling microscopy (STM) is used to visualize at submolecular resolution the three-dimensional structure of cellulose oligomers assembled on Au(1111) and the interactions that drive their assembly. The STM imaging, supported by ab initio calculations, reveals the orientation of all glycosidic bonds and pyranose rings in the oligomers, as well as details of intermolecular interactions between the oligomers. By comparing the assembly of D- and L-oligomers, these interactions are shown to be enantioselective, capable of driving spontaneous enantioseparation of cellulose chains from its unnatural enantiomer and promoting the formation of engineered carbohydrate assemblies in the condensed phases.

7.
ACS Omega ; 8(29): 26526-26532, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521651

RESUMEN

We modeled the uptake of water molecules into the nanopores of potassium-polyheptazineimide (K-PHI), a 2D covalent material that is one of the best water-splitting photocatalysts to date possessing experimentally reported strong water binding. In the current models, we find that first water molecules are bound with -94.5 kJ/mol, i.e., twice the cohesion energy of water and one of the highest adsorption enthalpies reported so far. This strong binding proceeds unexpectedly on a similar enthalpy level until the pore is filled, while the binding strength is passed through a conjugated water network. The tight binding is also expressed in calculated, strongly shortened O-O distances, which are on average about 5% shorter than in bulk water, which corresponds to a much higher water density, for a 2D structure above 1.1 g/ cm3. The H-bridges are strongly aligned in the direction perpendicular to the covalent planes, which could give reasons for the experimentally observed ultrahigh ion fluxes and conductivity of K-PHI membranes. Decomposition of the adsorption energy into components reveals an unexpectedly high charge transfer contribution, where the partly naked K+ ions play a key role. The latter fact not only offers a new structural lead motif for the design of more strongly, but reversibly binding adsorption materials involving metal ions on their surface but also puts cations as known cofactors in enzymes into a new light.

8.
Phys Chem Chem Phys ; 25(19): 13442-13451, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37092187

RESUMEN

In our present study, we have investigated the effects of an externally applied static electric field on the vibrational dynamics of liquid water (D2O) using ab initio molecular dynamics. The rate of vibrational spectral diffusion is obtained from simulated two-dimensional infrared spectra, three-pulse photon echo intensity, and frequency correlation functions and distributions. We find that the static vibrational frequency distribution undergoes a redshift of 90 cm-1 whereas the overall vibrational dynamics get slower with the relaxation time constant to be around 4.9 ps. Thus we infer that the local hydrogen bond network tends to reorganize in the presence of an external field with an increase in local structural order as evident from the overall slower vibrational dynamics and reduced molar entropy.

9.
Nano Lett ; 22(23): 9389-9395, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36416790

RESUMEN

2H-NbSe2 is a prototypical charge-density-wave (CDW) system, exhibiting such a symmetry-breaking quantum ground state in its bulk and down to a single-atomic-layer limit. However, how this state depends on dimensionality and what governs the dimensionality effect remain controversial. Here, we experimentally demonstrate a robust 3 × 3 CDW phase in both freestanding and substrate-supported bilayer NbSe2, far above the bulk transition temperature. We exclude environmental effects and reveal a strong temperature and thickness dependence of Raman intensity from an axially vibrating A1g phonon mode, involving Se ions. Using first-principles calculations, we show that these result from a delicate but profound competition between the intra- and interlayer bonding formed between Se-pz orbitals. Our results suggest the crucial role of Se out-of-plane displacement in driving the CDW distortion, revealing the Se-dominated dimensionality effect and establishing a new perspective on the chemical bonding and mechanical stability in layered CDW materials.

10.
ACS Omega ; 7(45): 41581-41585, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406529

RESUMEN

Aza-pinacol coupling of N-benzyl-1-phenylmethanimine using Zn dust affords a mixture of R,S- or R,R-diastereomers in a 1:1 ratio. The R,S-diastereomer is solid with an m.p. of 135 °C, while the R,R-diastereomer is liquid at room temperature. The configuration of stereocenters was determined by combining X-ray powder diffraction and density functional theory (DFT) modeling.

11.
ACS Nano ; 16(9): 14284-14296, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36053675

RESUMEN

With regard to the development of single atom catalysts (SACs), non-noble metal-organic layers combine a large functional variability with cost efficiency. Here, we characterize reacted layers of melamine and melem molecules on a Cu(111) surface by noncontact atomic force microscopy (nc-AFM), X-ray photoelectron spectroscopy (XPS) and ab initio simulations. Upon deposition on the substrate and subsequent heat treatments in ultrahigh vacuum (UHV), these precursors undergo a stepwise dehydrogenation. After full dehydrogenation of the amino groups, the molecular units lie flat and are strongly chemisorbed on the copper substrate. We observe a particularly extreme interaction of the dehydrogenated nitrogen atoms with single copper atoms located at intermolecular sites. In agreement with the nc-AFM measurements performed with an O-terminated copper tip on these triazine- and heptazine-based copper nitride structures, our ab initio simulations confirm a pronounced interaction of oxygen species at these N-Cu-N sites. To investigate the related functional properties of our samples regarding the oxygen reduction reaction (ORR), we developed an electrochemical setup for cyclic voltammetry experiments performed at ambient pressure within a drop of electrolyte in a controlled O2 or N2 environment. Both copper nitride structures show a robust activity in irreversibly catalyzing the reduction of oxygen. The activity is assigned to the intermolecular N-Cu-N sites of the triazine- and heptazine-based copper nitrides or corresponding oxygenated versions (N-CuO-N, N-CuO2-N). By combining nc-AFM characterization on the atomic scale with a direct electrochemical proof of performance, our work provides fundamental insights about active sites in a technologically highly relevant reaction.

12.
Adv Mater ; 34(40): e2206405, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35977414

RESUMEN

Carbon suboxide (C3 O2 ) is a unique molecule able to polymerize spontaneously into highly conjugated light-absorbing structures at temperatures as low as 0 °C. Despite obvious advantages, little is known about the nature and the functional properties of this carbonaceous material. In this work, the aim is to bring "red carbon," a forgotten polymeric semiconductor, back to the community's attention. A solution polymerization process is adapted to simplify the synthesis and control the structure. This allows one to obtain this crystalline covalent material at low temperatures. Both spectroscopic and elemental analyses support the chemical structure represented as conjugated ladder polypyrone ribbons. Density functional theory calculations suggest a crystalline structure of AB stacks of polypyrone ribbons and identify the material as a direct bandgap semiconductor with a medium bandgap that is further confirmed by optical analysis. The material shows promising photocatalytic performance using blue light. Moreover, the simple condensation-aromatization route described here allows the straightforward fabrication of conjugated ladder polymers and can be inspiring for the synthesis of carbonaceous materials at low temperatures in general.

13.
Artículo en Inglés | MEDLINE | ID: mdl-35848892

RESUMEN

Alkali postdeposition treatments of Cu(In,Ga)Se2 absorbers with KF, RbF, and CsF have led to remarkable efficiency improvements for chalcopyrite thin film solar cells. However, the effect of such treatments on the electronic properties and defect physics of the chalcopyrite absorber surfaces are not yet fully understood. In this work, we use scanning tunneling spectroscopy and X-ray photoelectron spectroscopy to compare the surface defect electronic properties and chemical composition of RbF-treated and nontreated absorbers. We find that the RbF treatment is effective in passivating electronic defect levels at the surface by preventing surface oxidation. Our X-ray photoelectron spectroscopy (XPS) data points to the presence of chemisorbed Rb on the surface with a bonding configuration similar to that of a RbInSe2 bulk compound. Yet, a quantitative analysis indicates Rb coverage in the submonolayer regime, which is likely causing the surface passivation. Furthermore, ab initio calculations confirm that RbF-treated surfaces are less prone to oxidation (in the form of Ga, In, and Se oxides) than bare chalcopyrite surfaces. In addition, elemental diffusion of Rb along with Na, Cu, and Ga is found to occur when the samples are annealed under ultrahigh vacuum conditions. Magnetic sector secondary ion mass spectrometry measurements indicate that there is a homogeneous spatial distribution of Rb on the surface both before and after annealing, albeit with an increased concentration at the surface after heat treatment. Depth-resolved magnetic sector secondary ion mass spectrometry measurements show that Rb diffusion within the bulk occurs predominantly along grain boundaries. Scanning tunneling and XPS measurements after subsequent annealing steps demonstrate that the Rb accumulation at the surface leads to the formation of metallic Rb phases, involving a significant increase of electronic defect levels and/or surface dipole formation. These results strongly suggest a deterioration of the absorber-window interface because of increased recombination losses after the heat-induced diffusion of Rb toward the interface.

14.
Adv Mater ; 34(37): e2203954, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35900293

RESUMEN

Growth of Cu(In,Ga)Se2 (CIGS) absorbers under Cu-poor conditions gives rise to incorporation of numerous defects into the bulk, whereas the same absorber grown under Cu-rich conditions leads to a stoichiometric bulk with minimum defects. This suggests that CIGS absorbers grown under Cu-rich conditions are more suitable for solar cell applications. However, the CIGS solar cell devices with record efficiencies have all been fabricated under Cu-poor conditions, despite the expectations. Therefore, in the present work, both Cu-poor and Cu-rich CIGS cells are investigated, and the superior properties of the internal interfaces of the Cu-poor CIGS cells, such as the p-n junction and grain boundaries, which always makes them the record-efficiency devices, are shown. More precisely, by employing a correlative microscopy approach, the typical fingerprints for superior properties of internal interfaces necessary for maintaining a lower recombination activity in the cell is discovered. These are a Cu-depleted and Cd-enriched CIGS absorber surface, near the p-n junction, as well as a negative Cu factor (∆ß) and high Na content (>1.5 at%) at the grain boundaries. Thus, this work provides key factors governing the device performance (efficiency), which can be considered in the design of next-generation solar cells.

15.
Nat Chem ; 14(9): 1031-1037, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35773490

RESUMEN

The solvation of ions changes the physical, chemical and thermodynamic properties of water, and the microscopic origin of this behaviour is believed to be ion-induced perturbation of water's hydrogen-bonding network. Here we provide microscopic insights into this process by monitoring the dissipation of energy in salt solutions using time-resolved terahertz-Raman spectroscopy. We resonantly drive the low-frequency rotational dynamics of water molecules using intense terahertz pulses and probe the Raman response of their intermolecular translational motions. We find that the intermolecular rotational-to-translational energy transfer is enhanced by highly charged cations and is drastically reduced by highly charged anions, scaling with the ion surface charge density and ion concentration. Our molecular dynamics simulations reveal that the water-water hydrogen-bond strength between the first and second solvation shells of cations increases, while it decreases around anions. The opposite effects of cations and anions on the intermolecular interactions of water resemble the effects of ions on the stabilization and denaturation of proteins.


Asunto(s)
Espectrometría Raman , Agua , Aniones , Cationes , Hidrógeno
16.
Dalton Trans ; 51(4): 1384-1394, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34989363

RESUMEN

The vapor phase infiltration (VPI) process of trimethyl aluminum (TMA) into poly(4-acetoxystyrene) (POAcSt), poly(nonyl methacrylate) (PNMA) and poly(tert-butyl methacrylate) (PtBMA) is reported. Depth-profiling X-ray photoelectron spectroscopy (XPS) measurements are used for the first time for VPI based hybrid materials to determine the aluminum content over the polymer film thickness. An understanding of the reaction mechanism on the interaction of TMA infiltrating into the different polymers was obtained through infrared (IR) spectroscopy supported by density functional theory (DFT) studies. It is shown that the loading with aluminum is highly dependent on the respective ester side group of the used polymer, which is observed to be the reactive site for TMA during the infiltration. IR spectroscopy hints that the infiltration is incomplete for POAcSt and PNMA, as indicated by the characteristic vibration bands of the aluminum coordination to the carbonyl groups within the polymers. In this context, two different reaction pathways are discussed. One deals with the formation of an acetal, the other is characterized by the release of a leaving group. Both were found to be in direct concurrence dependent on the polymer side group as revealed by DFT calculations of the IR spectra, as well as the reaction energies of two possible reaction paths. From this study, one can infer that the degree of infiltration in a VPI process strongly depends on the polymer side groups, which facilitates the choice of the polymer for targeted applications.

17.
Micromachines (Basel) ; 12(10)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34683263

RESUMEN

We demonstrate how to fully ascribe Raman peaks simulated using ab initio molecular dynamics to specific vibrations in the structure at finite temperatures by means of Wannier functions. Here, we adopt our newly introduced method for the simulation of the Raman spectra in which the total polarizability of the system is expressed as a sum over Wannier polarizabilities. The assignment is then based on the calculation of partial Raman activities arising from self- and/or cross-correlations between different types of Wannier functions in the system. Different types of Wannier functions can be distinguished based on their spatial spread. To demonstrate the predictive power of this approach, we applied it to the case of a cyclohexane molecule in the gas phase and were able to fully assign the simulated Raman peaks.

18.
J Phys Chem C Nanomater Interfaces ; 125(25): 13749-13758, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34239658

RESUMEN

Potassium poly (heptazine imide) (K-PHI), a crystalline two-dimensional carbon-nitride material, is an active photocatalyst for water splitting. The potassium ions in K-PHI can be exchanged with other ions to change the properties of the material and eventually to design the catalysts. We report here the electronic structures of several ion-exchanged salts of K-PHI (K, H, Au, Ru, and Mg) and their feasibility as water splitting photocatalysts, which were determined by density functional theory (DFT) calculations. The DFT results are complemented by experiments where the performances in the photocatalytic hydrogen evolution reaction (HER) were recorded. We show that due to its narrow band gap, Ru-PHI is not a suitable photocatalyst. The water oxidation potentials are straddled between the band edge potentials of H-PHI, Au-PHI, and Mg-PHI; thus, these are active photocatalysts for both the oxygen and hydrogen evolution reactions, whereas K-PHI is active only for the HER. The experimental data show that these are active HER photocatalysts, in agreement with the DFT results. Furthermore, Mg-PHI has shown remarkable performance in the HER, with a rate of 539 µmol/(h·g) and a quantum efficiency of 7.14% at 410 nm light irradiation, which could be due to activation of the water molecule upon adsorption, as predicted by our DFT calculations.

19.
Adv Mater ; 33(20): e2008752, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33939200

RESUMEN

Developing resource-abundant and sustainable metal-free bifunctional oxygen electrocatalysts is essential for the practical application of zinc-air batteries (ZABs). 2D black phosphorus (BP) with fully exposed atoms and active lone pair electrons can be promising for oxygen electrocatalysts, which, however, suffers from low catalytic activity and poor electrochemical stability. Herein, guided by density functional theory (DFT) calculations, an efficient metal-free electrocatalyst is demonstrated via covalently bonding BP nanosheets with graphitic carbon nitride (denoted BP-CN-c). The polarized PN covalent bonds in BP-CN-c can efficiently regulate the electron transfer from BP to graphitic carbon nitride and significantly promote the OOH* adsorption on phosphorus atoms. Impressively, the oxygen evolution reaction performance of BP-CN-c (overpotential of 350 mV at 10 mA cm-2 , 90% retention after 10 h operation) represents the state-of-the-art among the reported BP-based metal-free catalysts. Additionally, BP-CN-c exhibits a small half-wave overpotential of 390 mV for oxygen reduction reaction, representing the first bifunctional BP-based metal-free oxygen catalyst. Moreover, ZABs are assembled incorporating BP-CN-c cathodes, delivering a substantially higher peak power density (168.3 mW cm-2 ) than the Pt/C+RuO2 -based ZABs (101.3 mW cm-2 ). The acquired insights into interfacial covalent bonds pave the way for the rational design of new and affordable metal-free catalysts.

20.
Angew Chem Int Ed Engl ; 60(28): 15371-15375, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33908694

RESUMEN

Herein, we investigate a novel set of polarizing agents-mixed-valence compounds-by theoretical and experimental methods and demonstrate their performance in high-field dynamic nuclear polarization (DNP) NMR experiments in the solid state. Mixed-valence compounds constitute a group of molecules in which molecular mobility persists even in solids. Consequently, such polarizing agents can be used to perform Overhauser-DNP experiments in the solid state, with favorable conditions for dynamic nuclear polarization formation at ultra-high magnetic fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...