Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 27(2): 108958, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38323010

RESUMEN

The protein kinase D (PKD) family members regulate the fission of cargo vesicles at the Golgi complex and play a pro-oncogenic role in triple-negative breast cancer (TNBC). Whether PKD facilitates the secretion of tumor-promoting factors in TNBC, however, is still unknown. Using the pharmacological inhibition of PKD activity and siRNA-mediated depletion of PKD2 and PKD3, we identified the PKD-dependent secretome of the TNBC cell lines MDA-MB-231 and MDA-MB-468. Mass spectrometry-based proteomics and antibody-based assays revealed a significant downregulation of extracellular matrix related proteins and pro-invasive factors such as LIF, MMP-1, MMP-13, IL-11, M-CSF and GM-CSF in PKD-perturbed cells. Notably, secretion of these proteins in MDA-MB-231 cells was predominantly controlled by PKD2 and enhanced spheroid invasion. Consistently, PKD-dependent secretion of pro-invasive factors was more pronounced in metastatic TNBC cell lines. Our study thus uncovers a novel role of PKD2 in releasing a pro-invasive secretome.

2.
Commun Biol ; 6(1): 138, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732350

RESUMEN

While cytosine-C5 methylation of DNA is an essential regulatory system in higher eukaryotes, the presence and relevance of 6-methyladenine (m6dA) in human cells is controversial. To study the role of m6dA in human DNA, we introduced it in human cells at a genome-wide scale at GANTC and GATC sites by expression of bacterial DNA methyltransferases and observed concomitant reductions in cell viability, in particular after global GANTC methylation. We identified several genes that are directly regulated by m6dA in a GANTC context. Upregulated genes showed m6dA-dependent reduction of H3K27me3 suggesting that the PRC2 complex is inhibited by m6dA. Genes downregulated by m6dA showed enrichment of JUN family transcription factor binding sites. JUN binds m6dA containing DNA with reduced affinity suggesting that m6dA can reduce the recruitment of JUN transcription factors to target genes. Our study documents that global introduction of m6dA in human DNA has physiological effects. Furthermore, we identified a set of target genes which are directly regulated by m6dA in human cells, and we defined two molecular pathways with opposing effects by which artificially introduced m6dA in GANTC motifs can directly control gene expression and phenotypes of human cells.


Asunto(s)
Metilación de ADN , ADN , Humanos , Células HEK293 , ADN/genética , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...