Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Sci Adv ; 10(32): eadl5473, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121212

RESUMEN

Despite advancements in antifibrotic therapy, idiopathic pulmonary fibrosis (IPF) remains a medical condition with unmet needs. Single-cell RNA sequencing (scRNA-seq) has enhanced our understanding of IPF but lacks the cellular tissue context and gene expression localization that spatial transcriptomics provides. To bridge this gap, we profiled IPF and control patient lung tissue using spatial transcriptomics, integrating the data with an IPF scRNA-seq atlas. We identified three disease-associated niches with unique cellular compositions and localizations. These include a fibrotic niche, consisting of myofibroblasts and aberrant basaloid cells, located around airways and adjacent to an airway macrophage niche in the lumen, containing SPP1+ macrophages. In addition, we identified an immune niche, characterized by distinct lymphoid cell foci in fibrotic tissue, surrounded by remodeled endothelial vessels. This spatial characterization of IPF niches will facilitate the identification of drug targets that disrupt disease-driving niches and aid in the development of disease relevant in vitro models.


Asunto(s)
Fibrosis Pulmonar Idiopática , Pulmón , Transcriptoma , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/genética , Humanos , Pulmón/patología , Pulmón/metabolismo , Macrófagos/metabolismo , Análisis de la Célula Individual , Perfilación de la Expresión Génica , Miofibroblastos/metabolismo , Miofibroblastos/patología
2.
Cell Rep Med ; : 101697, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39178857

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors. In this study, we develop a clinically useful computational pathology platform for NSCLC that can be a foundation for multiple downstream applications and provide immediate value for patient care optimization and individualization. We train the primary multi-class tissue segmentation algorithm on a substantial, high-quality, manually annotated dataset of whole-slide images with lung adenocarcinoma and squamous cell carcinomas. We investigate two downstream applications. NSCLC subtyping algorithm is trained and validated using a large, multi-institutional (n = 6), multi-scanner (n = 5), international cohort of NSCLC cases (slides/patients 4,097/1,527). Moreover, we develop four AI-derived, fully explainable, quantitative, prognostic parameters (based on tertiary lymphoid structure and necrosis assessment) and validate them for different clinical endpoints. The computational platform enables the high-precision, quantitative analysis of H&E-stained slides. The developed prognostic parameters facilitate robust and independent risk stratification of patients with NSCLC.

3.
J Thromb Thrombolysis ; 57(6): 936-946, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38853210

RESUMEN

Inflammation including immunothrombosis by neutrophil extracellular traps (NETs) has important implications in acute ischemic stroke and can affect reperfusion status, susceptibility to stroke associated infections (SAI) as well as functional clinical outcome. NETs were shown to be prevalent in stroke thrombi and NET associated markers were found in stroke patients' blood. However, little is known whether blood derived NET markers reflect the amount of NETs in thrombi. Conclusions from blood derived markers to thrombus composition might open avenues for novel strategies in diagnostic and therapeutic approaches. We prospectively recruited 166 patients with acute ischemic stroke undergoing mechanical thrombectomy between March 2018 and May 2021. Available thrombi (n = 106) were stained for NET markers DNA-histone-1 complexes and myeloperoxidase (MPO). Cell free DNA (cfDNA), deoxyribonuclease (DNase) activity, MPO-histone complexes and a cytokine-panel were measured before thrombectomy and after seven days. Clinical data, including stroke etiology, reperfusion status, SAI and functional outcome after rehabilitation, were collected of all patients. NET markers were present in all thrombi. At onset the median concentration of cfDNA in blood was 0.19 µg/ml increasing to 0.30 µg/ml at 7 days. Median DNase activity at onset was 4.33 pmol/min/ml increasing to 4.96 pmol/min/ml at 7 days. Within thrombi DNA-histone-1 complexes and MPO correlated with each other (ρ = 0.792; p < 0.001). Moreover, our study provides evidence for an association between the amount of NETs and endogenous DNase activity in blood with amounts of NETs in cerebral thrombi. However, these associations need to be confirmed in larger cohorts, to investigate the potential clinical implications for individualized therapeutic and diagnostic approaches in acute ischemic stroke.


Asunto(s)
Biomarcadores , Trampas Extracelulares , Accidente Cerebrovascular Isquémico , Humanos , Trampas Extracelulares/metabolismo , Biomarcadores/sangre , Masculino , Femenino , Anciano , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Isquémico/diagnóstico , Persona de Mediana Edad , Estudios Prospectivos , Peroxidasa/sangre , Anciano de 80 o más Años , Ácidos Nucleicos Libres de Células/sangre , Trombectomía , Trombosis/sangre , Trombosis/diagnóstico , Neutrófilos/metabolismo
4.
Gels ; 10(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38920948

RESUMEN

A novel scaffold design has been created to enhance tissue engineering and regenerative medicine by optimizing the controlled, prolonged release of Hepatocyte Growth Factor (HGF), a powerful chemoattractant for endogenous mesenchymal stem cells. We present a new stacked scaffold that is made up of three different fibrin gel layers, each of which has HGF integrated into the matrix. The design attempts to preserve HGF's regenerative properties for long periods of time, which is necessary for complex tissue regeneration. These multi-layered fibrin gels have been mechanically evaluated using rheometry, and their degradation behavior has been studied using D-Dimer ELISA. Understanding the kinetics of HGF release from this novel scaffold configuration is essential for understanding HGF's long-term sustained bioactivity. A range of cell-based tests were carried out to verify the functionality of HGF following extended incorporation. These tests included 2-photon microscopy using phalloidin staining to examine cellular morphology, SEM analysis for scaffold-cell interactions, and scratch and scatter assays to assess migration and motility. The analyses show that the novel stacking scaffold promotes vital cellular processes for tissue regeneration in addition to supporting HGF's bioactivity. This scaffold design was developed for in situ tissue engineering. Using the body as a bioreactor, the scaffold should recruit mesenchymal stem cells from their niche, thus combining the regenerative abilities of HGF and MSCs to promote tissue remodeling and wound repair.

5.
Cancer Genomics Proteomics ; 21(4): 405-413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38944419

RESUMEN

BACKGROUND/AIM: Metastatic prostate cancer (mPCa) results in high morbidity and mortality. Visceral metastases in particular are associated with a shortened survival. Our aim was to unravel the molecular mechanisms that underly pulmonary spread in mPCa. MATERIALS AND METHODS: We performed a comprehensive transcriptomic analysis of PCa lung metastases, followed by functional validation of candidate genes. Digital gene expression analysis utilizing the NanoString technology was performed on mRNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissue from PCa lung metastases. The gene expression data from primary PCa and PCa lung metastases were compared, and several publicly available bioinformatic analysis tools were used to annotate and validate the data. RESULTS: In PCa lung metastases, 234 genes were considerably up-regulated, and 78 genes were significantly down-regulated when compared to primary PCa. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) was identified as suitable candidate gene for further functional validation. CEACAM6 as a cell adhesion molecule has been implicated in promoting metastatic disease in several solid tumors, such as colorectal or gastric cancer. We showed that siRNA knockdown of CEACAM6 in PC-3 and LNCaP cells resulted in decreased cell viability and migration as well as enhanced apoptosis. Comprehensive transcriptomic analyses identified several genes of interest that might promote metastatic spread to the lung. CONCLUSION: Functional validation revealed that CEACAM6 might play an important role in fostering metastatic spread to the lung of PCa patients via enhancing proliferation, migration and suppressing apoptosis in PC-3 and LNCaP cells. CEACAM6 might pose an attractive therapeutic target to prevent metastatic disease.


Asunto(s)
Antígenos CD , Apoptosis , Moléculas de Adhesión Celular , Movimiento Celular , Proliferación Celular , Proteínas Ligadas a GPI , Neoplasias Pulmonares , Neoplasias de la Próstata , Humanos , Masculino , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
6.
J Periodontol ; 95(7): 662-672, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38708919

RESUMEN

BACKGROUND: Teeth and supporting oral tissues are attractive and accessible sources of stem cells. Periodontal ligament stem cells (PDLSC) are readily isolated from extracted third molars, and exhibit the ability to self-renew and differentiate into multiple mesodermal cell fates. Clinical experience suggests that the exact location of periodontal defects affects the oral bone remodeling and wound healing. Compared to the mandible, the maxilla heals quicker and more efficiently. Angiogenesis is key in tissue regeneration including dental tissues, yet few studies focus on the angiogenic potential of PDLSC, none of which considered the differences between upper and lower jaw PDLSC (u-PDLSC and l-PDLSC, respectively). METHODS: Here we studied the angiogenic potential of u-PDLSC and l-PDLSC and compared the results to well-established mesenchymal stem cells (MSC). Cells were characterized in terms of surface markers, proliferation, and vascular endothelial growth factor (VEGF) secretion, and angiogenic assays were performed. Newly formed capillaries were stained with CD31, and their expression of platelet endothelial cell adhesion molecule (PECAM-1), angiopoietin 2 (ANGPT2), and vascular endothelial growth factor receptor 1 and 2 (VEGFR-1, VEGFR-2) were measured. RESULTS: Periodontal stem cells from the upper jaw showed a higher proliferation capacity, secreted more VEGF, and formed capillary networks faster and denser than l-PDLSC. Gene expression of angiogenesis-related genes was significantly higher in u-PDLSC than in l-PDLSC or MSC, given that culture conditions were suitable. CONCLUSION: The oral cavity is a valuable source of stem cells, particularly PDLSC, which are promising for oral tissue engineering due to their robust growth, lifelong accessibility, low immunogenicity, and strong differentiation potential. Notably, u-PDLSC exhibit higher VEGF secretion and accelerate capillary formation compared to l-PDLSC or MSC. This study suggests a potential molecular mechanism in capillary formation, emphasizing the significance of precise location isolation of PDLSC.


Asunto(s)
Neovascularización Fisiológica , Ligamento Periodontal , Factor A de Crecimiento Endotelial Vascular , Humanos , Proyectos Piloto , Ligamento Periodontal/citología , Ligamento Periodontal/irrigación sanguínea , Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/análisis , Células Madre Mesenquimatosas , Maxilar , Mandíbula , Proliferación Celular , Células Madre/fisiología , Masculino , Diferenciación Celular , Adulto , Femenino , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Células Cultivadas , Adulto Joven
7.
Angiogenesis ; 27(3): 293-310, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38580869

RESUMEN

In European countries, nearly 10% of all hospital admissions are related to respiratory diseases, mainly chronic life-threatening diseases such as COPD, pulmonary hypertension, IPF or lung cancer. The contribution of blood vessels and angiogenesis to lung regeneration, remodeling and disease progression has been increasingly appreciated. The vascular supply of the lung shows the peculiarity of dual perfusion of the pulmonary circulation (vasa publica), which maintains a functional blood-gas barrier, and the bronchial circulation (vasa privata), which reveals a profiled capacity for angiogenesis (namely intussusceptive and sprouting angiogenesis) and alveolar-vascular remodeling by the recruitment of endothelial precursor cells. The aim of this review is to outline the importance of vascular remodeling and angiogenesis in a variety of non-neoplastic and neoplastic acute and chronic respiratory diseases such as lung infection, COPD, lung fibrosis, pulmonary hypertension and lung cancer.


Asunto(s)
Neovascularización Patológica , Animales , Humanos , Pulmón/irrigación sanguínea , Pulmón/patología , Neovascularización Patológica/patología , Enfermedades Respiratorias/fisiopatología , Enfermedades Respiratorias/patología , Remodelación Vascular
8.
Gels ; 10(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38534600

RESUMEN

This study focuses on enhancing controllable fibrin-based hydrogels for tissue engineering, addressing existing weaknesses. By integrating a novel copolymer, we improved the foundation for cell-based angiogenesis with adaptable structural features. Tissue engineering often faces challenges like waste disposal and nutrient supply beyond the 200 µm diffusion limit. Angiogenesis breaks through this limitation, allowing the construction of larger constructs. Our innovative scaffold combination significantly boosts angiogenesis, resulting in longer branches and more capillary network junctions. The copolymer attached to fibrin fibers enables precise adjustment of hydrogel mechanical dynamic properties for specific applications. Our material proves effective for angiogenesis, even under suppression factors like suramin. In our study, we prepared fibrin-based hydrogels with and without the copolymer PVP12400-co-GMA10mol%. Using a co-culture system of human umbilical vein endothelial cells (HUVEC) and mesenchymal stem cells (MSC), we analyzed angiogenetic behavior on and within the modified hydrogels. Capillary-like structures were reproducibly formed on different surfaces, demonstrating the general feasibility of three-dimensional endothelial cell networks in fibrin-based hydrogels. This highlights the biomaterial's suitability for in vitro pre-vascularization of biohybrid implants.

9.
J Am Heart Assoc ; 13(3): e033553, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38293923

RESUMEN

BACKGROUND: Alveolar hypoxia is protective in the context of cardiovascular and ischemic heart disease; however, the underlying mechanisms are incompletely understood. The present study sought to test the hypothesis that hypoxia is cardioprotective in left ventricular pressure overload (LVPO)-induced heart failure. We furthermore aimed to test that overlapping mechanisms promote cardiac recovery in heart failure patients following left ventricular assist device-mediated mechanical unloading and circulatory support. METHODS AND RESULTS: We established a novel murine model of combined chronic alveolar hypoxia and LVPO following transverse aortic constriction (HxTAC). The HxTAC model is resistant to cardiac hypertrophy and the development of heart failure. The cardioprotective mechanisms identified in our HxTAC model include increased activation of HIF (hypoxia-inducible factor)-1α-mediated angiogenesis, attenuated induction of genes associated with pathological remodeling, and preserved metabolic gene expression as identified by RNA sequencing. Furthermore, LVPO decreased Tbx5 and increased Hsd11b1 mRNA expression under normoxic conditions, which was attenuated under hypoxic conditions and may induce additional hypoxia-mediated cardioprotective effects. Analysis of samples from patients with advanced heart failure that demonstrated left ventricular assist device-mediated myocardial recovery revealed a similar expression pattern for TBX5 and HSD11B1 as observed in HxTAC hearts. CONCLUSIONS: Hypoxia attenuates LVPO-induced heart failure. Cardioprotective pathways identified in the HxTAC model might also contribute to cardiac recovery following left ventricular assist device support. These data highlight the potential of our novel HxTAC model to identify hypoxia-mediated cardioprotective mechanisms and therapeutic targets that attenuate LVPO-induced heart failure and mediate cardiac recovery following mechanical circulatory support.


Asunto(s)
Estenosis de la Válvula Aórtica , Insuficiencia Cardíaca , Humanos , Ratones , Animales , Insuficiencia Cardíaca/etiología , Cardiomegalia/metabolismo , Miocardio/metabolismo , Hipoxia/complicaciones , Remodelación Ventricular , Modelos Animales de Enfermedad
10.
Adv Healthc Mater ; 12(30): e2302084, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37661312

RESUMEN

The bactericidal effects of silver nanoparticles (Ag NPs) against infectious strains of multiresistant bacteria is a well-studied phenomenon, highly relevant for many researchers and clinicians battling bacterial infections. However, little is known about the uptake of the Ag NPs into the bacteria, the related uptake mechanisms, and how they are connected to antimicrobial activity. Even less information is available on AgAu alloy NPs uptake. In this work, the interactions between colloidal silver-gold alloy nanoparticles (AgAu NPs) and Staphylococcus aureus (S. aureus) using advanced electron microscopy methods are studied. The localization of the nanoparticles is monitored on the membrane and inside the bacterial cells and the elemental compositions of intra- and extracellular nanoparticle species. The findings reveal the formation of pure silver nanoparticles with diameters smaller than 10 nm inside the bacteria, even though those particles are not present in the original colloid. This finding is explained by a local RElease PEnetration Reduction (REPER) mechanism of silver cations emitted from the AgAu nanoparticles, emphasized by the localization of the AgAu nanoparticles on the bacterial membrane by aptamer targeting ligands. These findings can deepen the understanding of the antimicrobial effect of nanosilver, where the microbes are defusing the attacking silver ions via their reduction, and aid in the development of suitable therapeutic approaches.


Asunto(s)
Aleaciones de Oro , Nanopartículas del Metal , Aleaciones de Oro/farmacología , Plata/farmacología , Staphylococcus aureus , Aleaciones/farmacología , Oro/farmacología , Bacterias , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
12.
Nat Commun ; 14(1): 3267, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277327

RESUMEN

COVID-19 survivors often suffer from post-acute sequelae of SARS-CoV-2 infection (PASC). Current evidence suggests dysregulated alveolar regeneration as a possible explanation for respiratory PASC, which deserves further investigation in a suitable animal model. This study investigates morphological, phenotypical and transcriptomic features of alveolar regeneration in SARS-CoV-2 infected Syrian golden hamsters. We demonstrate that CK8+ alveolar differentiation intermediate (ADI) cells occur following SARS-CoV-2-induced diffuse alveolar damage. A subset of ADI cells shows nuclear accumulation of TP53 at 6- and 14-days post infection (dpi), indicating a prolonged arrest in the ADI state. Transcriptome data show high module scores for pathways involved in cell senescence, epithelial-mesenchymal transition, and angiogenesis in cell clusters with high ADI gene expression. Moreover, we show that multipotent CK14+ airway basal cell progenitors migrate out of terminal bronchioles, aiding alveolar regeneration. At 14 dpi, ADI cells, peribronchiolar proliferates, M2-macrophages, and sub-pleural fibrosis are observed, indicating incomplete alveolar restoration. The results demonstrate that the hamster model reliably phenocopies indicators of a dysregulated alveolar regeneration of COVID-19 patients. The results provide important information on a translational COVID-19 model, which is crucial for its application in future research addressing pathomechanisms of PASC and in testing of prophylactic and therapeutic approaches for this syndrome.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , Síndrome Post Agudo de COVID-19 , Diferenciación Celular , Células Epiteliales Alveolares , Progresión de la Enfermedad , Mesocricetus
13.
Phys Med Biol ; 68(11)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37167977

RESUMEN

Objectives.As the central organ of the respiratory system, the human lung is responsible for supplying oxygen to the blood, which reaches the erythrocytes by diffusion through the alveolar walls and is then distributed throughout the body. By exploiting the difference in electron density detected by a phase shift in soft tissue, high-resolution x-ray phase-contrast computed tomography (XPCT) can resolve biological structures in a sub-µm range, shedding new light on the three-dimensional structure of the lungs, physiological functions and pathological mechanisms.Approach.This work presents both synchrotron and laboratory XPCT results of postmortem tissue from autopsies and biopsies embedded with various preparation protocols such as precision-cut lung slices, cryogenically fixed lung tissue, as well as paraffin and alcohol fixed tissue. The selection of pathological abnormalities includes channel of Lambert, bronchus-associated lymphoid tissue and alveolar capillary dysplasia with misalignment of pulmonary veins. Subsequently, quantification and visualization approaches are presented.Main results.The overall high image quality even of in-house XPCT scans for the case of FFPE biopsies can be exploited for a wide range of pulmonary pathologies and translated to dedicated and optimized instrumentation which could be operated in clinical setting. By using synchrotron radiation, contrast can be further increased to resolve sub-µm sized features down to the sub-cellular level. The results demonstrate that a wide range of preparation protocols including sample mounting in liquids can be used.Significance.With XPCT, poorly understood 3D structures can be identified in larger volume overview and subsequently studied in more detail at higher resolution. With the full 3D structure, the respective physiological functions of airways or vascular networks, and the different pathophysiologic mechanisms can be elucidated or at least underpinned with structural data. Moreover, synchrotron data can be used to validate laboratory protocols and provide ground truth for standardizing the method.


Asunto(s)
Imagenología Tridimensional , Síndrome de Circulación Fetal Persistente , Recién Nacido , Humanos , Rayos X , Imagenología Tridimensional/métodos , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Sincrotrones , Microtomografía por Rayos X/métodos
14.
Front Endocrinol (Lausanne) ; 14: 1118751, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891060

RESUMEN

Background: Perturbed mitochondrial energetics and vitamin A (VitA) metabolism are associated with the pathogenesis of diet-induced obesity (DIO) and type 2 diabetes (T2D). Methods: To test the hypothesis that VitA regulates tissue-specific mitochondrial energetics and adverse organ remodeling in DIO, we utilized a murine model of impaired VitA availability and high fat diet (HFD) feeding. Mitochondrial respiratory capacity and organ remodeling were assessed in liver, skeletal muscle, and kidney tissue, which are organs affected by T2D-associated complications and are critical for the pathogenesis of T2D. Results: In liver, VitA had no impact on maximal ADP-stimulated mitochondrial respiratory capacity (VADP) following HFD feeding with palmitoyl-carnitine and pyruvate each combined with malate as substrates. Interestingly, histopathological and gene expression analyses revealed that VitA mediates steatosis and adverse remodeling in DIO. In skeletal muscle, VitA did not affect VADP following HFD feeding. No morphological differences were detected between groups. In kidney, VADP was not different between groups with both combinations of substrates and VitA transduced the pro-fibrotic transcriptional response following HFD feeding. Conclusion: The present study identifies an unexpected and tissue-specific role for VitA in DIO that regulates the pro-fibrotic transcriptional response and that results in organ damage independent of changes in mitochondrial energetics.


Asunto(s)
Diabetes Mellitus Tipo 2 , Vitamina A , Ratones , Animales , Vitamina A/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos
15.
iScience ; 26(4): 106309, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36968089

RESUMEN

Influenza viruses (IVs) cause substantial global morbidity and mortality. Given the limited range of licensed antiviral drugs and their reduced efficacy due to resistance mutations, repurposing FDA-approved kinase inhibitors as fast-tracked host-targeted antivirals is an attractive strategy. We identified six FDA-approved non-receptor tyrosine kinase-inhibitors (NRTKIs) as potent inhibitors of viral replication of pandemic and seasonal IVs in vitro. We validated their efficacy in a biologically and clinically relevant ex vivo model of human precision-cut lung slices. We identified steps of the virus infection cycle affected by these inhibitors and assessed their effect(s) on host responses. Their overlapping targets suggest crosstalk between Abl, EGFR, and PDGFR pathways during IAV infection. Our data and established safety profiles of these NRTKIs provide compelling evidence for further clinical investigations and repurposing as host-targeted influenza antivirals. Moreover, these NRTKIs have broad-spectrum antiviral potential given that their kinase/pathway targets are critical for the replication of many viruses.

17.
Am J Physiol Heart Circ Physiol ; 323(6): H1352-H1364, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399384

RESUMEN

Perturbed vitamin-A metabolism is associated with type 2 diabetes and mitochondrial dysfunction that are pathophysiologically linked to the development of diabetic cardiomyopathy (DCM). However, the mechanism, by which vitamin A might regulate mitochondrial energetics in DCM has previously not been explored. To test the hypothesis that vitamin-A deficiency accelerates the onset of cardiomyopathy in diet-induced obesity (DIO), we subjected mice with lecithin retinol acyltransferase (Lrat) germline deletion, which exhibit impaired vitamin-A stores, to vitamin A-deficient high-fat diet (HFD) feeding. Wild-type mice fed with a vitamin A-sufficient HFD served as controls. Cardiac structure, contractile function, and mitochondrial respiratory capacity were preserved despite vitamin-A deficiency following 20 wk of HFD feeding. Gene profiling by RNA sequencing revealed that vitamin A is required for the expression of genes involved in cardiac fatty acid oxidation, glycolysis, tricarboxylic acid cycle, and mitochondrial oxidative phosphorylation in DIO as expression of these genes was relatively preserved under vitamin A-sufficient HFD conditions. Together, these data identify a transcriptional program, by which vitamin A preserves cardiac energetic gene expression in DIO that might attenuate subsequent onset of mitochondrial and contractile dysfunction.NEW & NOTEWORTHY The relationship between vitamin-A status and the pathogenesis of diabetic cardiomyopathy has not been studied in detail. We assessed cardiac mitochondrial respiratory capacity, contractile function, and gene expression by RNA sequencing in a murine model of combined vitamin-A deficiency and diet-induced obesity. Our study identifies a role for vitamin A in preserving cardiac energetic gene expression that might attenuate subsequent development of mitochondrial and contractile dysfunction in diet-induced obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Ratones , Animales , Vitamina A , Modelos Animales de Enfermedad , Dieta , Obesidad/genética , Expresión Génica , Vitaminas
18.
EBioMedicine ; 85: 104296, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36206625

RESUMEN

BACKGROUND: COVID-19 is characterized by a heterogeneous clinical presentation, ranging from mild symptoms to severe courses of disease. 9-20% of hospitalized patients with severe lung disease die from COVID-19 and a substantial number of survivors develop long-COVID. Our objective was to provide comprehensive insights into the pathophysiology of severe COVID-19 and to identify liquid biomarkers for disease severity and therapy response. METHODS: We studied a total of 85 lungs (n = 31 COVID autopsy samples; n = 7 influenza A autopsy samples; n = 18 interstitial lung disease explants; n = 24 healthy controls) using the highest resolution Synchrotron radiation-based hierarchical phase-contrast tomography, scanning electron microscopy of microvascular corrosion casts, immunohistochemistry, matrix-assisted laser desorption ionization mass spectrometry imaging, and analysis of mRNA expression and biological pathways. Plasma samples from all disease groups were used for liquid biomarker determination using ELISA. The anatomic/molecular data were analyzed as a function of patients' hospitalization time. FINDINGS: The observed patchy/mosaic appearance of COVID-19 in conventional lung imaging resulted from microvascular occlusion and secondary lobular ischemia. The length of hospitalization was associated with increased intussusceptive angiogenesis. This was associated with enhanced angiogenic, and fibrotic gene expression demonstrated by molecular profiling and metabolomic analysis. Increased plasma fibrosis markers correlated with their pulmonary tissue transcript levels and predicted disease severity. Plasma analysis confirmed distinct fibrosis biomarkers (TSP2, GDF15, IGFBP7, Pro-C3) that predicted the fatal trajectory in COVID-19. INTERPRETATION: Pulmonary severe COVID-19 is a consequence of secondary lobular microischemia and fibrotic remodelling, resulting in a distinctive form of fibrotic interstitial lung disease that contributes to long-COVID. FUNDING: This project was made possible by a number of funders. The full list can be found within the Declaration of interests / Acknowledgements section at the end of the manuscript.


Asunto(s)
COVID-19 , Enfermedades Pulmonares Intersticiales , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Enfermedades Pulmonares Intersticiales/patología , Fibrosis , Biomarcadores/análisis , Isquemia/patología , Síndrome Post Agudo de COVID-19
19.
Viruses ; 14(9)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36146864

RESUMEN

Influenza virus (IV) infections pose a burden on global public health with significant morbidity and mortality. The limited range of currently licensed IV antiviral drugs is susceptible to the rapid rise of resistant viruses. In contrast, FDA-approved kinase inhibitors can be repurposed as fast-tracked host-targeted antivirals with a higher barrier of resistance. Extending our recent studies, we screened 21 FDA-approved small-molecule kinase inhibitors (SMKIs) and identified seven candidates as potent inhibitors of pandemic and seasonal IV infections. These SMKIs were further validated in a biologically and clinically relevant ex vivo model of human precision-cut lung slices. We identified steps of the virus infection cycle affected by these inhibitors (entry, replication, egress) and found that most SMKIs affected both entry and egress. Based on defined and overlapping targets of these inhibitors, the candidate SMKIs target receptor tyrosine kinase (RTK)-mediated activation of Raf/MEK/ERK pathways to limit influenza A virus infection. Our data and the established safety profiles of these SMKIs support further clinical investigations and repurposing of these SMKIs as host-targeted influenza therapeutics.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Antivirales/farmacología , Antivirales/uso terapéutico , Línea Celular , Humanos , Gripe Humana/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/metabolismo , Proteínas Tirosina Quinasas Receptoras , Estados Unidos , United States Food and Drug Administration , Replicación Viral , Quinasas raf/metabolismo
20.
Front Immunol ; 13: 879157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619694

RESUMEN

During the COVID-19 pandemic, vaccination is the most important countermeasure. Pharmacovigilance concerns however emerged with very rare, but potentially disastrous thrombotic complications following vaccination with ChAdOx1. Platelet factor-4 antibody mediated vaccine-induced immune thrombotic thrombocytopenia (VITT) was described as an underlying mechanism of these thrombotic events. Recent work moreover suggests that mechanisms of immunothrombosis including neutrophil extracellular trap (NET) formation might be critical for thrombogenesis during VITT. In this study, we investigated blood and thrombus specimens of a female patient who suffered severe stroke due to VITT after vaccination with ChAdOx1 in comparison to 13 control stroke patients with similar clinical characteristics. We analyzed cerebral thrombi using histological examination, staining of complement factors, NET-markers, DNase and LL-37. In blood samples at the hyper-acute phase of stroke and 7 days later, we determined cell-free DNA, myeloperoxidase-histone complexes, DNase activity, myeloperoxidase activity, LL-37 and inflammatory cytokines. NET markers were identified in thrombi of all patients. Interestingly, the thrombus of the VITT-patient exclusively revealed complement factors and high amounts of DNase and LL-37. High DNase activity was also measured in blood, implying a disturbed NET-regulation. Furthermore, serum of the VITT-patient inhibited reactive oxygen species-dependent NET-release by phorbol-myristate-acetate to a lesser degree compared to controls, indicating either less efficient NET-inhibition or enhanced NET-induction in the blood of the VITT-patient. Additionally, the changes in specific cytokines over time were emphasized in the VITT-patient as well. In conclusion, insufficient resolution of NETs, e.g. by endogenous DNases or protection of NETs against degradation by embedded factors like the antimicrobial peptide LL-37 might thus be an important factor in the pathology of VITT besides increased NET-formation. On the basis of these findings, we discuss the potential implications of the mechanisms of disturbed NETs-degradation for diagnostic and therapeutic approaches in VITT-related thrombogenesis, other auto-immune disorders and beyond.


Asunto(s)
COVID-19 , Trampas Extracelulares , Púrpura Trombocitopénica Idiopática , Accidente Cerebrovascular , Trombocitopenia , Trombosis , Vacunas , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasas , Femenino , Humanos , Neutrófilos , Pandemias , Peroxidasa/metabolismo , Factor Plaquetario 4/metabolismo , Púrpura Trombocitopénica Idiopática/metabolismo , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/metabolismo , Trombocitopenia/inducido químicamente , Trombocitopenia/metabolismo , Trombosis/etiología , Trombosis/metabolismo , Vacunas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...