Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381130

RESUMEN

While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of major facilitator superfamily transporters. With a conformation-selective nanobody, we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. The available outward-facing sugar-bound structures showed that the N- and C-terminal residues of the inner barrier contribute to the sugar selectivity. The inward-open conformation shows that the sugar selectivity pocket is also broken when the inner barrier is broken. Isothermal titration calorimetry measurements revealed that this inward-facing conformation trapped by this nanobody exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is supported by molecular dynamics simulations. Furthermore, the hydron/deuterium exchange mass spectrometry analyses allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.


Asunto(s)
Proteínas de Transporte de Membrana , Cloruro de Sodio , Transporte Iónico , Cationes , Azúcares
2.
bioRxiv ; 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37790566

RESUMEN

While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of the Na+-coupled major facilitator superfamily transporters. With a conformational nanobody (Nb), we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. Collectively with the available outward-facing sugar-bound structures, both the outer and inner barriers were localized. The N- and C-terminal residues of the inner barrier contribute to the sugar selectivity pocket. When the inner barrier is broken as shown in the inward-open conformation, the sugar selectivity pocket is also broken. The binding assays by isothermal titration calorimetry revealed that this inward-facing conformation trapped by the conformation-selective Nb exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for the substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is also supported by molecular dynamics simulations. Furthermore, the use of this Nb in combination with the hydron/deuterium exchange mass spectrometry allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.

3.
J Biol Chem ; 299(8): 104967, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380079

RESUMEN

Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the Na+-coupled major facilitator superfamily transporters, which are important for the cellular uptake of molecules including sugars and small drugs. Although the symport mechanisms have been well-studied, mechanisms of substrate binding and translocation remain enigmatic. We have previously determined the sugar-binding site of outward-facing MelBSt by crystallography. To obtain other key kinetic states, here we raised camelid single-domain nanobodies (Nbs) and carried out a screening against the WT MelBSt under 4 ligand conditions. We applied an in vivo cAMP-dependent two-hybrid assay to detect interactions of Nbs with MelBSt and melibiose transport assays to determine the effects on MelBSt functions. We found that all selected Nbs showed partial to complete inhibitions of MelBSt transport activities, confirming their intracellular interactions. A group of Nbs (714, 725, and 733) was purified, and isothermal titration calorimetry measurements showed that their binding affinities were significantly inhibited by the substrate melibiose. When titrating melibiose to the MelBSt/Nb complexes, Nb also inhibited the sugar-binding. However, the Nb733/MelBSt complex retained binding to the coupling cation Na+ and also to the regulatory enzyme EIIAGlc of the glucose-specific phosphoenolpyruvate/sugar phosphotransferase system. Further, EIIAGlc/MelBSt complex also retained binding to Nb733 and formed a stable supercomplex. All data indicated that MelBSt trapped by Nbs retained its physiological functions and the trapped conformation is similar to that bound by the physiological regulator EIIAGlc. Therefore, these conformational Nbs can be useful tools for further structural, functional, and conformational analyses.


Asunto(s)
Anticuerpos de Dominio Único , Simportadores , Anticuerpos de Dominio Único/metabolismo , Melibiosa/metabolismo , Simportadores/metabolismo , Transporte Iónico , Sodio/metabolismo
4.
J Biol Chem ; 298(2): 101505, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929170

RESUMEN

Bacterial transporters are difficult to study using conventional electrophysiology because of their low transport rates and the small size of bacterial cells. Here, we applied solid-supported membrane-based electrophysiology to derive kinetic parameters of sugar translocation by the Escherichia coli xylose permease (XylE), including functionally relevant mutants. Many aspects of the fucose permease (FucP) and lactose permease (LacY) have also been investigated, which allow for more comprehensive conclusions regarding the mechanism of sugar translocation by transporters of the major facilitator superfamily. In all three of these symporters, we observed sugar binding and transport in real time to determine KM, Vmax, KD, and kobs values for different sugar substrates. KD and kobs values were attainable because of a conserved sugar-induced electrogenic conformational transition within these transporters. We also analyzed interactions between the residues in the available X-ray sugar/H+ symporter structures obtained with different bound sugars. We found that different sugars induce different conformational states, possibly correlating with different charge displacements in the electrophysiological assay upon sugar binding. Finally, we found that mutations in XylE altered the kinetics of glucose binding and transport, as Q175 and L297 are necessary for uncoupling H+ and d-glucose translocation. Based on the rates for the electrogenic conformational transition upon sugar binding (>300 s-1) and for sugar translocation (2 s-1 - 30 s-1 for different substrates), we propose a multiple-step mechanism and postulate an energy profile for sugar translocation. We also suggest a mechanism by which d-glucose can act as an inhibitor for XylE.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte de Monosacáridos , Simportadores , Metabolismo de los Hidratos de Carbono , Electrofisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucosa/metabolismo , Cinética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Azúcares/metabolismo , Simportadores/metabolismo
5.
FEBS Lett ; 594(20): 3356-3362, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32780424

RESUMEN

The monoclonal antibody 4B1 binds to a conformational epitope on the periplasmic side of lactose permease (LacY) of Escherichia coli and inhibits H+ /lactose symport and lactose efflux under nonenergized conditions. At the same time, ligand binding and translocation reactions that do not involve net H+ translocation remain unaffected by 4B1. In this study, surface-enhanced infrared absorption spectroscopy applied to the immobilized LacY was used to study the pH-dependent changes in LacY and to access in situ the effect of the 4B1 antibody on the pKa of Glu325, the primary functional H+ -binding site in LacY. A small shift of the pK value from 10.5 to 9.5 was identified that can be corroborated with the inactivation of LacY upon 4B1 binding.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Ácido Glutámico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Simportadores/metabolismo , Transporte Biológico , Proteínas de Escherichia coli/química , Concentración de Iones de Hidrógeno , Lactosa/metabolismo , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Proteínas de Transporte de Monosacáridos/química , Espectrofotometría Infrarroja , Simportadores/química
6.
PLoS One ; 15(5): e0232846, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32380514

RESUMEN

The structure of lactose permease, stabilized in a periplasmic open conformation by two Gly to Trp replacements (LacYww) and complexed with a nanobody directed against this conformation, provides the highest resolution structure of the symporter. The nanobody binds in a different manner than two other nanobodies made against the same mutant, which also bind to the same general region on the periplasmic side. This region of the protein may represent an immune hotspot. The CDR3 loop of the nanobody is held by hydrogen bonds in a conformation that partially blocks access to the substrate-binding site. As a result, kon and koff for galactoside binding to either LacY or the double mutant complexed with the nanobody are lower than for the other two LacY/nanobody complexes though the Kd values are similar, reflecting the fact that the nanobodies rigidify structures along the pathway. While the wild-type LacY/nanobody complex clearly stabilizes a similar 'extracellular open' conformation in solution, judged by binding kinetics, the complex with wild-type LacY did not yet crystallize, suggesting the nanobody does not bind strongly enough to shift the equilibrium to stabilize a periplasmic side-open conformation suitable for crystallization. However, the similarity of the galactoside binding kinetics for the nanobody-bound complexes with wild type LacY and with LacYWW indicates that they have similar structures, showing that the reported co-structures reliably show nanobody interactions with LacY.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Transporte de Monosacáridos/química , Anticuerpos de Dominio Único/química , Simportadores/química , Sustitución de Aminoácidos , Reacciones Antígeno-Anticuerpo , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Galactosa/metabolismo , Glicina/química , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/inmunología , Mutación Missense , Mutación Puntual , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Anticuerpos de Dominio Único/inmunología , Relación Estructura-Actividad , Simportadores/genética , Simportadores/inmunología , Tiogalactósidos/química , Triptófano/química
7.
Proc Natl Acad Sci U S A ; 117(2): 977-981, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31889006

RESUMEN

LacY catalyzes accumulation of galactosides against a concentration gradient by coupling galactoside and H+ transport (i.e., symport). While alternating access of sugar- and H+-binding sites to either side of the membrane is driven by binding and dissociation of sugar, the electrochemical H+ gradient ([Formula: see text]) functions kinetically by decreasing the Km for influx 50- to 100-fold with no change in Kd The affinity of protonated LacY for sugar has an apparent pK (pKapp) of ∼10.5, due specifically to the pKa of Glu325, a residue that plays an irreplaceable role in coupling. In this study, rates of lactose/H+ efflux were measured from pH 5.0 to 9.0 in the absence or presence of a membrane potential (ΔΨ, interior positive), and the effect of the imposed ΔΨ on the kinetics of efflux was also studied in right-side-out membrane vesicles. The findings reveal that [Formula: see text] induces an asymmetry in the transport cycle based on the following observations: 1) the efflux rate of WT LacY exhibits a pKapp of ∼7.2 that is unaffected by the imposed ΔΨ; 2) ΔΨ increases the rate of efflux at all tested pH values, but enhancement is almost 2 orders of magnitude less than observed for influx; 3) mutant Glu325 - Ala does little or no efflux in the absence or presence of ΔΨ, and ambient pH has no effect; and 4) the effect of ΔΨ (interior positive) on the Km for efflux is almost insignificant relative to the 50- to 100-fold decrease in the Km for influx driven by ΔΨ (interior negative).


Asunto(s)
Galactósidos/metabolismo , Potenciales de la Membrana/fisiología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Protones , Sitios de Unión , Transporte Biológico , Concentración de Iones de Hidrógeno , Transporte Iónico , Cinética , Lactosa/metabolismo , Proteínas de Transporte de Membrana/genética , Modelos Moleculares
8.
J Gen Physiol ; 151(7): 878-886, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31147449

RESUMEN

The lactose permease (LacY) of Escherichia coli is the prototype of the major facilitator superfamily, one of the largest families of membrane transport proteins. Structurally, two pseudo-symmetrical six-helix bundles surround a large internal aqueous cavity. Single binding sites for galactoside and H+ are positioned at the approximate center of LacY halfway through the membrane at the apex of the internal cavity. These features enable LacY to function by an alternating-access mechanism that can catalyze galactoside/H+ symport in either direction across the cytoplasmic membrane. The H+-binding site is fully protonated under physiological conditions, and subsequent sugar binding causes transition of the ternary complex to an occluded intermediate that can open to either side of the membrane. We review the structural and functional evidence that has provided new insight into the mechanism by which LacY achieves active transport against a concentration gradient.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Transporte de Monosacáridos/química , Simportadores/química , Sitios de Unión , Represión Catabólica , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lactosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Protones , Simportadores/genética , Simportadores/metabolismo
9.
Sci Adv ; 5(1): eaau6824, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30801000

RESUMEN

Biogenesis in prokaryotes and eukaryotes requires the insertion of α-helical proteins into cellular membranes for which they use universally conserved cellular machineries. In bacterial inner membranes, insertion is facilitated by YidC insertase and SecYEG translocon working individually or cooperatively. How insertase and translocon fold a polypeptide into the native protein in the membrane is largely unknown. We apply single-molecule force spectroscopy assays to investigate the insertion and folding process of single lactose permease (LacY) precursors assisted by YidC and SecYEG. Both YidC and SecYEG initiate folding of the completely unfolded polypeptide by inserting a single structural segment. YidC then inserts the remaining segments in random order, whereas SecYEG inserts them sequentially. Each type of insertion process proceeds until LacY folding is complete. When YidC and SecYEG cooperate, the folding pathway of the membrane protein is dominated by the translocase. We propose that both of the fundamentally different pathways along which YidC and SecYEG insert and fold a polypeptide are essential components of membrane protein biogenesis.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Pliegue de Proteína , Canales de Translocación SEC/metabolismo , Simportadores/metabolismo , Liposomas/metabolismo , Microscopía de Fuerza Atómica/métodos , Modelos Moleculares , Péptidos/metabolismo , Fosfolípidos/metabolismo , Biosíntesis de Proteínas , Conformación Proteica en Hélice alfa , Transporte de Proteínas
10.
Proc Natl Acad Sci U S A ; 116(11): 4934-4939, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30792352

RESUMEN

Lactose permease is a paradigm for the major facilitator superfamily, the largest family of ion-coupled membrane transport proteins known at present. LacY carries out the coupled stoichiometric symport of a galactoside with an H+, using the free energy released from downhill translocation of H+ to drive accumulation of galactosides against a concentration gradient. In neutrophilic Escherichia coli, internal pH is kept at ∼7.6 over the physiological range, but the apparent pK (pKapp) for galactoside binding is 10.5. Surface-enhanced infrared absorption spectroscopy (SEIRAS) demonstrates that the high pKa is due to Glu325 (helix X), which must be protonated for LacY to bind galactoside effectively. Deprotonation is also obligatory for turnover, however. Here, we utilize SEIRAS to study the effect of mutating residues in the immediate vicinity of Glu325 on its pKa The results are consistent with the idea that Arg302 (helix IX) is important for deprotonation of Glu325.


Asunto(s)
Arginina/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Simportadores/metabolismo , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutación/genética , Espectrofotometría Infrarroja
11.
Proc Natl Acad Sci U S A ; 115(50): 12716-12721, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30478058

RESUMEN

The lactose permease of Escherichia coli (LacY) utilizes an alternating access symport mechanism with multiple conformational intermediates, but only inward (cytoplasmic)- or outward (periplasmic)-open structures have been characterized by X-ray crystallography. It is demonstrated here with sugar-binding studies that cross-linking paired-Cys replacements across the closed cytoplasmic cavity stabilize an occluded conformer with an inaccessible sugar-binding site. In addition, a nanobody (Nb) that stabilizes a periplasmic-open conformer with an easily accessible sugar-binding site in WT LacY fails to cause the cytoplasmic cross-linked mutants to become accessible to galactoside, showing that the periplasmic cavity is closed. These results are consistent with tight association of the periplasmic ends in two pairs of helices containing clusters of small residues in the packing interface between N- and C-terminal six-helix bundles of the symporter. However, after reduction of the disulfide bond, the Nb markedly increases the rate of galactoside binding, indicating unrestricted access to the Nb epitope and the galactoside-binding site from the periplasm. The findings indicate that the cross-linked cytoplasmic double-Cys mutants resemble an occluded apo-intermediate in the transport cycle.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Monosacáridos/química , Simportadores/química , Sitios de Unión , Cristalografía por Rayos X/métodos , Citoplasma/metabolismo , Escherichia coli/metabolismo , Galactósidos/química , Galactósidos/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Periplasma/metabolismo , Simportadores/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(35): 8769-8774, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30108145

RESUMEN

The lactose permease of Escherichia coli (LacY), a dynamic polytopic membrane transport protein, catalyzes galactoside/H+ symport and operates by an alternating access mechanism that exhibits multiple conformations, the distribution of which is altered by sugar-binding. Camelid nanobodies were made against a double-mutant Gly46 → Trp/Gly262 → Trp (LacYWW) that produces an outward-open conformation, as opposed to the cytoplasmic open-state crystal structure of WT LacY. Nanobody 9047 (Nb9047) stabilizes WT LacY in a periplasmic-open conformation. Here, we describe the X-ray crystal structure of a complex between LacYWW, the high-affinity substrate analog 4-nitrophenyl-α-d-galactoside (NPG), and Nb9047 at 3-Å resolution. The present crystal structure demonstrates that Nb9047 binds to the periplasmic face of LacY, primarily to the C-terminal six-helical bundle, while a flexible loop of the Nb forms a bridge between the N- and C-terminal halves of LacY across the periplasmic vestibule. The bound Nb partially covers the vestibule, yet does not affect the on-rates or off-rates for the substrate binding to LacYWW, which implicates dynamic flexibility of the Nb-LacYWW complex. Nb9047-binding neither changes the overall structure of LacYWW with bound NPG, nor the positions of side chains comprising the galactoside-binding site. The current NPG-bound structure exhibits a more occluded periplasmic vestibule than seen in a previous structure of a (different Nb) apo-LacYWW/Nb9039 complex that we argue is caused by sugar-binding, with major differences located at the periplasmic ends of transmembrane helices in the N-terminal half of LacY.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Transporte de Monosacáridos/química , Anticuerpos de Dominio Único/química , Simportadores/química , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Monosacáridos/genética , Mutación , Estructura Cuaternaria de Proteína , Simportadores/genética
13.
Proc Natl Acad Sci U S A ; 115(16): 4146-4151, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29602806

RESUMEN

Binding kinetics of α-galactopyranoside homologs with fluorescent aglycones of different sizes and shapes were determined with the lactose permease (LacY) of Escherichia coli by FRET from Trp151 in the binding site of LacY to the fluorophores. Fast binding was observed with LacY stabilized in an outward-open conformation (kon = 4-20 µM-1·s-1), indicating unobstructed access to the binding site even for ligands that are much larger than lactose. Dissociation rate constants (koff) increase with the size of the aglycone so that Kd values also increase but remain in the micromolar range for each homolog. Phe27 (helix I) forms an apparent constriction in the pathway for sugar by protruding into the periplasmic cavity. However, replacement of Phe27 with a bulkier Trp does not create an obstacle in the pathway even for large ligands, since binding kinetics remain unchanged. High accessibility of the binding site is also observed in a LacY/nanobody complex with partially blocked periplasmic opening. Remarkably, E. coli expressing WT LacY catalyzes transport of α- or ß-galactopyranosides with oversized aglycones such as bodipy or Aldol518, which may require an extra space within the occluded intermediate. The results confirm that LacY specificity is strictly directed toward the galactopyranoside ring and also clearly indicate that the opening on the periplasmic side is sufficiently wide to accommodate the large galactoside derivatives tested here. We conclude that the actual pathway for the substrate entering from the periplasmic side is wider than the pore diameter calculated in the periplasmic-open X-ray structures.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Galactósidos/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Simportadores/metabolismo , Sitios de Unión , Transporte Biológico Activo , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Colorantes Fluorescentes , Galactosa/química , Galactosa/metabolismo , Galactósidos/química , Cinética , Ligandos , Modelos Moleculares , Estructura Molecular , Proteínas de Transporte de Monosacáridos/química , Periplasma/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Simportadores/química
14.
Biochemistry ; 56(13): 1943-1950, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28300394

RESUMEN

Galactoside/H+ symport by the lactose permease of Escherichia coli (LacY) involves reciprocal opening and closing of periplasmic and cytoplasmic cavities so that sugar- and H+-binding sites become alternatively accessible to either side of the membrane. After reconstitution into proteoliposomes, LacY with the periplasmic cavity sealed by cross-linking paired-Cys residues does not bind sugar from the periplasmic side. However, reduction of the S-S bond restores opening of the periplasmic cavity and galactoside binding. Furthermore, nanobodies that stabilize the double-Cys mutant in a periplasmic-open conformation and allow free access of galactoside to the binding site do so only after reduction of the S-S bond. In contrast, when cross-linked LacY is solubilized in detergent, galactoside binding is observed, indicating that the cytoplasmic cavity is patent. Sugar binding from the cytoplasmic side exhibits nonlinear stopped-flow kinetics, and analysis reveals a two-step process in which a conformational change precedes binding. Because the cytoplasmic cavity is spontaneously closing and opening in the symporter with a sealed periplasmic cavity, it is apparent that an asymmetrical conformational transition controls access of sugar to the binding site.


Asunto(s)
Cisteína/química , Disulfuros/química , Proteínas de Escherichia coli/química , Galactosa/química , Proteínas de Transporte de Monosacáridos/química , Proteolípidos/química , Protones , Simportadores/química , Sitios de Unión , Transporte Biológico , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Galactosa/metabolismo , Expresión Génica , Cinética , Modelos Moleculares , Proteínas de Transporte de Monosacáridos/metabolismo , Oxidación-Reducción , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteolípidos/metabolismo , Simportadores/metabolismo , Termodinámica
15.
Proc Natl Acad Sci U S A ; 114(7): 1530-1535, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28154138

RESUMEN

Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and a H+ across the cytoplasmic membrane of Escherichia coli (galactoside/H+ symport). One of the most important aspects of the mechanism is the relationship between protonation and binding of the cargo galactopyranoside. In this regard, it has been shown that protonation is required for binding. Furthermore when galactoside affinity is measured as a function of pH, an apparent pK (pKapp) of ∼10.5 is obtained. Strikingly, when Glu325, a residue long known to be involved in coupling between H+ and sugar translocation, is replaced with a neutral side chain, the pH effect is abolished, and high-affinity binding is observed until LacY is destabilized at alkaline pH. In this paper, infrared spectroscopy is used to identify Glu325 in situ. Moreover, it is demonstrated that this residue exhibits a pKa of 10.5 ± 0.1 that is insensitive to the presence of galactopyranoside. Thus, it is apparent that protonation of Glu325 specifically is required for effective sugar binding to LacY.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Simportadores/metabolismo , Sustitución de Aminoácidos , Enzimas Inmovilizadas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Galactosa/farmacología , Ácido Glutámico/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/efectos de los fármacos , Proteínas de Transporte de Monosacáridos/genética , Mutación Missense , Nitrofenilgalactósidos/metabolismo , Mutación Puntual , Unión Proteica , Conformación Proteica , Protones , Proteínas Recombinantes/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Simportadores/química , Simportadores/efectos de los fármacos , Simportadores/genética , Quinasas p21 Activadas
16.
Sci Rep ; 7: 41751, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28176812

RESUMEN

Most membrane proteins studies require the use of detergents, but because of the lack of a general, accurate and rapid method to quantify them, many uncertainties remain that hamper proper functional and structural data analyses. To solve this problem, we propose a method based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) that allows quantification of pure or mixed detergents in complex with membrane proteins. We validated the method with a wide variety of detergents and membrane proteins. We automated the process, thereby allowing routine quantification for a broad spectrum of usage. As a first illustration, we show how to obtain information of the amount of detergent in complex with a membrane protein, essential for liposome or nanodiscs reconstitutions. Thanks to the method, we also show how to reliably and easily estimate the detergent corona diameter and select the smallest size, critical for favoring protein-protein contacts and triggering/promoting membrane protein crystallization, and to visualize the detergent belt for Cryo-EM studies.


Asunto(s)
Detergentes/química , Proteínas de la Membrana/química , Detergentes/metabolismo , Liposomas , Proteínas de la Membrana/metabolismo , Micelas , Modelos Moleculares , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/normas
17.
Proc Natl Acad Sci U S A ; 113(44): 12420-12425, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791182

RESUMEN

The lactose permease of Escherichia coli (LacY), a dynamic polytopic membrane protein, catalyzes galactoside-H+ symport and operates by an alternating access mechanism that exhibits multiple conformations, the distribution of which is altered by sugar binding. We have developed single-domain camelid nanobodies (Nbs) against a mutant in an outward (periplasmic)-open conformation to stabilize this state of the protein. Here we describe an X-ray crystal structure of a complex between a double-Trp mutant (Gly46→Trp/Gly262→Trp) and an Nb in which free access to the sugar-binding site from the periplasmic cavity is observed. The structure confirms biochemical data indicating that the Nb binds stoichiometrically with nanomolar affinity to the periplasmic face of LacY primarily to the C-terminal six-helix bundle. The structure is novel because the pathway to the sugar-binding site is constricted and the central cavity containing the galactoside-binding site is empty. Although Phe27 narrows the periplasmic cavity, sugar is freely accessible to the binding site. Remarkably, the side chains directly involved in binding galactosides remain in the same position in the absence or presence of bound sugar.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Transporte de Monosacáridos/química , Periplasma/metabolismo , Conformación Proteica , Anticuerpos de Dominio Único/química , Simportadores/química , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Modelos Moleculares , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/inmunología , Mutación , Unión Proteica , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Simportadores/genética , Simportadores/inmunología
18.
Biochemistry ; 55(42): 5917-5926, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27686537

RESUMEN

Camelid nanobodies (Nbs) raised against the outward-facing conformer of a double-Trp mutant of the lactose permease of Escherichia coli (LacY) stabilize the permease in outward-facing conformations. Isothermal titration calorimetry is applied herein to dissect the binding thermodynamics of two Nbs, one that markedly improves access to the sugar-binding site and another that dramatically increases the affinity for galactoside. The findings presented here show that both enthalpy and entropy contribute favorably to binding of the Nbs to wild-type (WT) LacY and that binding of Nb to double-Trp mutant G46W/G262W is driven by a greater enthalpy at an entropic penalty. Thermodynamic analyses support the interpretation that WT LacY is stabilized in outward-facing conformations like the double-Trp mutant with closure of the water-filled cytoplasmic cavity through conformational selection. The LacY conformational transition required for ligand binding is reflected by a favorable entropy increase. Molecular dynamics simulations further suggest that the entropy increase likely stems from release of immobilized water molecules primarily from the cytoplasmic cavity upon closure.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Anticuerpos de Dominio Único , Calorimetría , Escherichia coli/enzimología , Simulación de Dinámica Molecular , Especificidad por Sustrato , Termodinámica
19.
Nat Chem Biol ; 12(11): 911-917, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27595331

RESUMEN

How chaperones, insertases and translocases facilitate insertion and folding of complex cytoplasmic proteins into cellular membranes is not fully understood. Here we utilize single-molecule force spectroscopy to observe YidC, a transmembrane chaperone and insertase, sculpting the folding trajectory of the polytopic α-helical membrane protein lactose permease (LacY). In the absence of YidC, unfolded LacY inserts individual structural segments into the membrane; however, misfolding dominates the process so that folding cannot be completed. YidC prevents LacY from misfolding by stabilizing the unfolded state from which LacY inserts structural segments stepwise into the membrane until folding is completed. During stepwise insertion, YidC and the membrane together stabilize the transient folds. Remarkably, the order of insertion of structural segments is stochastic, indicating that LacY can fold along variable pathways toward the native structure. Since YidC is essential in membrane protein biogenesis and LacY is a model for the major facilitator superfamily, our observations have general relevance.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/metabolismo , Pliegue de Proteína , Simportadores/química , Simportadores/metabolismo , Proteínas de Transporte de Membrana/química , Procesos Estocásticos , Estrés Mecánico
20.
Biochemistry ; 55(31): 4326-32, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27438891

RESUMEN

On the periplasmic side of LacY, two conserved Gly-Gly pairs in helices II and XI (Gly46 and Gly370, respectively) and helices V and VIII (Gly159 and Gly262, respectively) allow close packing of each helix pair in the outward (periplasmic)-closed conformation. Previous studies demonstrate that replacing one Gly residue in each Gly-Gly pair with Trp leads to opening of the periplasmic cavity with abrogation of transport activity, but an increased rate of galactoside binding. To further investigate the role of the Gly-Gly pairs, 11 double-replacement mutants were constructed for each pair at positions 46 (helix II) and 262 (helix VIII). Replacement with Ala or Ser results in decreased but significant transport activity, while replacements with Thr, Val, Leu, Asn, Gln, Tyr, Trp, Glu, or Lys exhibit very little or no transport. Remarkably, however, the double mutants bind galactoside with affinities 10-20-fold higher than that of the pseudo-WT or WT LacY. Moreover, site-directed alkylation of a periplasmic Cys replacement indicates that the periplasmic cavity becomes readily accessible in the double-replacement mutants. Molecular dynamics simulations with the WT and double-Leu mutant in the inward-open/outward-closed conformation provide support for this interpretation.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética , Simportadores/química , Simportadores/genética , Alquilación , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Transporte Biológico Activo , Secuencia Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicilglicina/química , Glicilglicina/genética , Lactosa/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas de Transporte de Monosacáridos/metabolismo , Mutagénesis Sitio-Dirigida , Nitrofenilgalactósidos/metabolismo , Periplasma/metabolismo , Conformación Proteica , Conformación Proteica en Hélice alfa , Simportadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA