Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(10): 8122-8140, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712838

RESUMEN

Multiple sclerosis (MS) is a chronic disease with an underlying pathology characterized by inflammation-driven neuronal loss, axonal injury, and demyelination. Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase and member of the TEC family of kinases, is involved in the regulation, migration, and functional activation of B cells and myeloid cells in the periphery and the central nervous system (CNS), cell types which are deemed central to the pathology contributing to disease progression in MS patients. Herein, we describe the discovery of BIIB129 (25), a structurally distinct and brain-penetrant targeted covalent inhibitor (TCI) of BTK with an unprecedented binding mode responsible for its high kinome selectivity. BIIB129 (25) demonstrated efficacy in disease-relevant preclinical in vivo models of B cell proliferation in the CNS, exhibits a favorable safety profile suitable for clinical development as an immunomodulating therapy for MS, and has a low projected total human daily dose.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Encéfalo , Esclerosis Múltiple , Inhibidores de Proteínas Quinasas , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Humanos , Animales , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/química , Encéfalo/metabolismo , Ratones , Descubrimiento de Drogas , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Ratas , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Femenino
2.
Expert Opin Drug Deliv ; 17(3): 323-340, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32027807

RESUMEN

Introduction: Neurodegenerative diseases are those wherein the neurons in the brain or peripheral nervous system lose their function, eventually culminating in neuronal death. Aging acts as the predominant factor here due to the reduced protein turnover rate in aging cells. As neurotrophic factors possess imperative roles in protecting the neurons and restoring their functionality, design of different modalities to deliver them to the brain would significantly enhance the therapeutic benefits.Areas covered: This review covers the various mechanisms of neurodegeneration, its molecular link with aging, different neurotrophic factor classes and their potentials, current treatment strategies, the challenges associated with the delivery of neurotrophic factors, administration routes, design of different delivery vehicle design, alternative modalities of delivery, and the clinical translational challenges of these strategies.Expert opinion: A deeper molecular level understanding about the complexity of neurodegeneration, discovery of potential biomarkers, which helps identifying the right targets, finding the accurate animal model completely recapitulating the human scenario, and a validated design of clinical trials would immensely help in overcoming the present challenges. The substantial developments in the field of gene therapy, usage of small molecules and peptide mimetics, combinatory approaches, etc. definitely give brighter hopes.


Asunto(s)
Terapia Genética , Factores de Crecimiento Nervioso/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Encéfalo/fisiopatología , Humanos , Factores de Crecimiento Nervioso/genética , Péptidos/administración & dosificación
3.
Clin Cancer Res ; 25(22): 6633-6643, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31320596

RESUMEN

PURPOSE: Recommended phase II dose (RP2D) determination for combination therapy regimens is a constrained optimization problem of maximizing antitumor activity within the constraint of clinical tolerability to provide a wide therapeutic index. A methodology for addressing this problem was developed and tested using clinical and preclinical data from combinations of the investigational drugs TAK-117, a PI3Kα inhibitor, and TAK-228, a TORC1/2 dual inhibitor. EXPERIMENTAL DESIGN: Utilizing free fraction-corrected average concentrations, [Formula: see text] and [Formula: see text], which are the primary pharmacokinetic predictors of single-agent preclinical antitumor activity, a preclinical exposure-efficacy surface was characterized, allowing for nonlinear interactions between growth rate inhibition of the agents on a MDA-MB-361 cell line xenograft model. Logistic regression was used to generate an exposure-effect surface for [Formula: see text] and [Formula: see text] versus clinical toxicity outcomes [experiencing a dose-limiting toxicity (DLT)] in single-agent and combination dose-escalation studies. A maximum tolerated exposure curve was defined at which DLT probability was 25%; predicted antitumor activity along this curve was used to determine optimal RP2D. RESULTS: The toxicity constraint curve determined from early clinical data predicted that any clinically tolerable combination was unlikely to result in greater antitumor activity than either single-agent TAK-117 or TAK-228 administered at their respective MTDs. Similar results were obtained with 10 other cell lines, with one agent or the other predicted to outperform the combination. CONCLUSIONS: This methodology represents a general, principled way of evaluating and selecting optimal RP2D combinations in oncology. The methodology will be retested upon availability of clinical data from TAK-117/TAK-228 combination phase II studies.See related commentary by Mayawala et al., p. 6564.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Modelos Teóricos , Neoplasias/tratamiento farmacológico , Algoritmos , Animales , Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Ensayos Clínicos Fase I como Asunto , Terapia Combinada , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Humanos , Ratones , Neoplasias/patología , Índice Terapéutico , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Pharm Res ; 36(9): 134, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31297653

RESUMEN

PURPOSE: Despite extensive preclinical investigations, in-vivo properties and formulation characteristics that improve CNS drug delivery following systemic dosing of nanoemulsions remain incompletely understood. METHODS: The CNS targeting potential of systemically administered nanoemulsions was evaluated by formulating rapamycin containing fish oil nanoemulsions, and testing the combined effect of formulation characteristics such as the circulation half-life and particle size distribution, on CNS delivery of rapamycin containing fish oil nanoemulsions in mice. RESULTS: Results generated with rapamycin nanoemulsions suggested that circulation half-life and particle size distribution did not impact the brain targeting efficiency of rapamycin containing fish oil nanoemulsions. Further, in the absence of any improvement in the systemic exposures of rapamycin, nanoemulsions did not outperform their aqueous counterpart with respect to the extent of CNS drug delivery. CONCLUSIONS: Our findings confirm that BBB penetration, which primarily depends on intrinsic drug-related properties, may not be significantly improved following encapsulation of drugs in nanoemulsions. Graphical Abstract The CNS targeting potential of systemically administered nanoemulsions was investigated by formulating various rapamycin containing fish oil nanoemulsions associated with different formulation characteristics such as the circulation half-life and particle size distribution. The targeting efficiency (TE) defined as the ratio of the brain exposures to the accompanying systemic exposures of rapamycin was estimated for each formulation following IV dosing in mice.


Asunto(s)
Encéfalo/metabolismo , Aceites de Pescado/química , Nanopartículas/química , Sirolimus/administración & dosificación , Animales , Barrera Hematoencefálica/metabolismo , Permeabilidad de la Membrana Celular , Emulsiones , Ratones , Tamaño de la Partícula , Polietilenglicoles/química , Sirolimus/farmacocinética , Distribución Tisular
5.
Pharm Res ; 36(5): 75, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30923914

RESUMEN

PURPOSE: Despite encouraging preclinical results, mechanisms of CNS drug delivery following intranasal dosing of nanoemulsions remain incompletely understood. Herein, the transport characteristics of intranasally administered nanoemulsions are investigated using mathematical modeling and simulation. METHODS: A compartmental model was developed to describe systemic and brain pharmacokinetics of drug solutions following intranasal dosing in rodents. The association between transport processes and CNS drug delivery was predicted using sensitivity analysis. Published pharmacokinetic data for four drugs; dosed as a nanoemulsion and aqueous solution were modeled to characterize differences in transport processes across formulations. RESULTS: The intranasal model structure performed in a drug agnostic fashion. Sensitivity analysis suggested that though the extent of CNS drug delivery depends on nasal bioavailability, the CNS targeting efficiency is only sensitive to changes in drug permeability across the nasal epithelium. Modeling results indicated that nanoemulsions primarily improve nasal bioavailability and drug permeability across the olfactory epithelium, with minimal effect on drug permeability across the non-olfactory epithelium. CONCLUSIONS: Using mathematical modeling we outlined dominant transport pathways following intranasal dosing, predicted the association between transport pathways and CNS drug delivery, predicted human CNS delivery after accounting for inter-species differences in nasal anatomy, and quantified the CNS delivery potential of different formulations in rodents.


Asunto(s)
Sistema Nervioso Central/metabolismo , Simulación por Computador , Sistemas de Liberación de Medicamentos/métodos , Modelos Biológicos , Nanopartículas/administración & dosificación , Preparaciones Farmacéuticas/administración & dosificación , Administración Intranasal , Animales , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Emulsiones , Humanos , Nanopartículas/química , Mucosa Olfatoria/metabolismo , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Ratas , Investigación Biomédica Traslacional
6.
Nanomedicine ; 15(1): 274-284, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343013

RESUMEN

A woven nanotextile implant was developed and optimized for long-term continuous drug delivery for potential oncological applications. Electrospun polydioxanone (PDS) nanoyarns, which are twisted bundles of PDS nanofibres, were loaded with paclitaxel (PTX) and woven into nanotextiles of different packing densities. A mechanistic modeling of in vitro drug release proved that a combination of diffusion and matrix degradation controlled the slow PTX-release from a nanoyarn, emphasizing the role of nanostructure in modulating release kinetics. Woven nanotextiles, through variations in its packing density and thereby architecture, demonstrated tuneable PTX-release. In vivo PTX-release, pharmacokinetics and biodistribution were evaluated in healthy BALB/c mice by suturing the nanotextile to peritoneal wall. The slow and metronomic PTX-release for 60 days from the loosely woven implant was extremely effective in enhancing its residence in peritoneum, in contrast to intraperitoneal injections. Such an implantable matrix offers a novel platform for therapy of solid tumors over prolonged durations.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Paclitaxel/farmacocinética , Peritoneo/metabolismo , Textiles , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Proliferación Celular , Células Cultivadas , Implantes de Medicamentos , Liberación de Fármacos , Ratones , Ratones Endogámicos BALB C , Nanoestructuras/administración & dosificación , Paclitaxel/administración & dosificación , Polímeros/química , Distribución Tisular
7.
Pharm Res ; 34(7): 1416-1427, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28389708

RESUMEN

PURPOSE: Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. METHODS: Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. RESULTS: Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. CONCLUSIONS: Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.


Asunto(s)
Emulsiones/metabolismo , Modelos Biológicos , Nanopartículas/metabolismo , Rodaminas/metabolismo , Transporte Biológico , Células CACO-2 , Química Farmacéutica , Portadores de Fármacos , Liberación de Fármacos , Emulsiones/química , Endocitosis , Aceites de Pescado , Humanos , Nanopartículas/química , Tamaño de la Partícula , Permeabilidad , Rodaminas/química , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...