Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Appl Crystallogr ; 55(Pt 5): 1072-1084, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36249505

RESUMEN

A novel spin echo small-angle neutron scattering (SESANS) concept based on a rotationally symmetric magnetic field geometry is introduced. The proposed method is similar to the conventional linear SESANS technique but uses longitudinal precession fields and field gradients in a radial direction, as typically found in neutron spin echo (NSE) spectrometers. Radial SESANS could thus be implemented as an add-on to NSE setups. The neutron trajectory through the instrument is encoded with the help of radial gradients generated by radial shifters, which are coils placed in the beam area similar to Fresnel coils. The present work introduces the setup of the instrument and explores its performance and the relationship between the encoded momentum transfer and the precession angle. The results indicate that radial SESANS is only sensitive to scattering along the radial direction and thus measures the projected correlation function along this direction as a function of the spin echo length, defined similarly to linear SESANS. For an evaluation of the performance of the setup, the case of scattering from solid spheres is considered and the results calculated for the radial and linear SESANS cases are compared. Also discussed is the implementation of the radial magnetic field geometry in spin echo modulated small-angle neutron scattering.

2.
Rev Sci Instrum ; 91(12): 125104, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379941

RESUMEN

An improved quartz crystal microbalance measurement method is described, which allows us to determine erosion, implantation, and release rates of thin films, during changing temperatures and up to 700 K. A quasi-simultaneous excitation of two eigenmodes of the quartz resonator is able to compensate for frequency drifts due to temperature changes. The necessary electronics, the controlling behavior, and the dual-mode temperature compensation are described. With this improved technique, quantitative in situ temperature-programmed desorption measurements are possible and the quartz crystal microbalance can be used for quantification of thermal desorption spectroscopy measurements with a quadrupole mass spectrometer. This is demonstrated by a study of the retention and release behavior of hydrogen isotopes in fusion-relevant materials. We find that more than 90% of the deuterium implanted into a thin film of beryllium is released during a subsequent temperature ramp up to 500 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...