Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5037, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424450

RESUMEN

The filamentous Thermoascus aurantiacus fungus characterized by its thermophilic nature, is recognized as an exceptional producer of various enzymes with biotechnological applications. This study aimed to explore biotechnological applications using polygalacturonase (PG) derived from the Thermoascus aurantiacus PI3S3 strain. PG production was achieved through submerged fermentation and subsequent purification via ion-exchange chromatography and gel filtration methods. The crude extract exhibited a diverse spectrum of enzymatic activities including amylase, cellulase, invertase, pectinase, and xylanase. Notably, it demonstrated the ability to hydrolyze sugarcane bagasse biomass, corn residue, and animal feed. The purified PG had a molecular mass of 36 kDa, with optimal activity observed at pH 4.5 and 70 °C. The activation energy (Ea) was calculated as 0.513 kJ mol-1, highlighting activation in the presence of Ca2+. Additionally, it displayed apparent Km, Vmax, and Kcat values of at 0.19 mg mL-1, 273.10 U mL-1, and 168.52 s-1, respectively, for hydrolyzing polygalacturonic acid. This multifunctional PG exhibited activities such as denim biopolishing, apple juice clarification, and demonstrated both endo- and exo-polygalacturonase activities. Furthermore, it displayed versatility by hydrolyzing polygalacturonic acid, carboxymethylcellulose, and xylan. The T. aurantiacus PI3S3 multifunctional polygalacturonase showed heightened activity under acidic pH, elevated temperatures, and in the presence of calcium. Its multifunctional nature distinguished it from other PGs, significantly expanding its potential for diverse biotechnological applications.


Asunto(s)
Saccharum , Thermoascus , Poligalacturonasa/metabolismo , Thermoascus/metabolismo , Celulosa , Enzimas Multifuncionales , Saccharum/metabolismo , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Temperatura
2.
Braz J Microbiol ; 54(3): 1559-1564, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37440124

RESUMEN

Denim, also known as jeans, is a fabric made up of braided cotton threads dyed indigo blue, whose fibers contain approximately 10% of non-cellulosic impurities that reduce its commercial value. Microbial enzymes can act in the cleaning and desizing processes of jeans, improving their color, softness, and covering capacity. The recombinant Xylanase II (XynA2) from the aquatic bacterial Caulobacter crescentus (C. crescentus), previously characterized in terms of its biochemical features, was applied to the biotreatment of jeans to clean and degum it. The biotreatment performance was evaluated in terms of tissue weight loss, amount of reducing sugars released and analysis of the images obtained by scanning electron microscopy (SEM). Biotreated tissues, at 12 and 24 h, showed a dry weight loss of 4.9 and 6.6%, respectively. The reducing sugars amount released after XynA2 action over the jean's fibers showed statistically significant values when compared with each other and with their respective controls. SEM images clearly shown that the fabric treated for 12 h presented a smooth and polished surface, while the fabric treated for 24 h showed the cotton fibers broken, displaying severe damage to the textile. The best treatment for the jeans was in the presence of 1 U mg-1 XynA2 at pH 8 and 60 °C during 12 h. In conclusion, XynA2 of C. crescentus was satisfactorily applied for the biopolishing of denim jeans being a more sustainable alternative to the use of chemical and abrasive processes to obtain the same effects.


Asunto(s)
Caulobacter crescentus , Caulobacter crescentus/genética , Textiles , Fibra de Algodón , Carmin de Índigo , Colorantes
3.
Braz J Microbiol ; 53(3): 1167-1174, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35482283

RESUMEN

Purified endoxylanase from Thermomyces lanuginosus PC7S1T was immobilized in calcium alginate, resulting in a yield of 78.5% and a reusability for 11 cycles. The stability of the immobilized enzyme was given for a pH range of 4 to 9 for 96 h. Endoxylanase immobilized in calcium alginate at 65 °C exhibited thermal stability equal to the soluble enzyme for 5 h, and at high temperatures of 75 °C and 85 °C showed half-lives of 4 and 3 h, respectively. Both soluble endoxylanase and immobilized forms were able to hydrolyze hemicellulose, obtained from low-lignin sorghum biomass pretreated with 5% H2O2 and 2% NaOH, after 1 h of incubation at 65 °C, releasing a mixture of short-chain xylooligosaccharides (X2-X6). The highest amounts of XOS generated were those for X5 (24 to 40%), X4 (33 to 39%), and X3 (11 to 22%). These XOS acted as prebiotics, promoting the growth of the probiotic L. acidophilus, similar to glucose in the MRS broth. These results show the potential of low-lignin sorghum to generate XOS with prebiotic activity, suggesting the application of these compounds in the food industry.


Asunto(s)
Endo-1,4-beta Xilanasas , Sorghum , Alginatos , Biomasa , Grano Comestible , Eurotiales , Glucuronatos , Peróxido de Hidrógeno , Hidrólisis , Lignina/química , Oligosacáridos/química
4.
Braz J Microbiol ; 53(3): 1133-1157, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35397075

RESUMEN

The scientific community has been alarmed by the possible immunological evasion, higher infectivity, and severity of disease caused by the newest variants of SARS-CoV-2. The spike protein has an important role in the cellular invasion of viruses and is the target of several vaccines and therapeutic resources, such as monoclonal antibodies. In addition, some of the most relevant mutations in the different variants are on the spike (S) protein gene sequence that leads to structural alterations in the predicted protein, thus causing concern about the protection mediated by vaccines against these new strains. The present review highlights the most recent knowledge about COVID-19 and vaccines, emphasizing the different spike protein structures of SARS-CoV-2 and updating the reader about the emerging viral variants and their classifications, the more common viral mutations described and their distribution in Brazil. It also compiles a table with the most recent knowledge about all of the Omicron spike mutations.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Humanos , Mutación , SARS-CoV-2/genética , Proteínas del Envoltorio Viral/genética
5.
J Appl Microbiol ; 132(4): 2832-2843, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34850500

RESUMEN

AIMS: The objective of this study was to determine the best conditions to produce invertase by Cunninghamella echinulata PA3S12MM and to immobilize and apply the enzyme. METHODS AND RESULTS: The maximum production was verified in 8 days of cultivation at 28°C supplemented with 10 g L-1 apple peel, reaching 1054.85 U ml-1 . The invertase was purified from the DEAE-Sephadex column. The derivative immobilized in alginate-gelatin-calcium phosphate showed reusability >50% for 19 cycles. The derivative immobilized in glutaraldehyde-chitosan showed greater thermostability and at a different pH. The hydrolysis of 15 ml of sucrose 500 g L-1 in a fixed bed reactor (total volume of 31 ml) produced 24.44 µmol min-1 of glucose and fructose at a residence time of 30 min and a conversion factor of 0.5. CONCLUSIONS: The new wild strain C. echinulata PA3S12MM presents high invertase production in medium supplemented with an agro-industrial residue and the immobilized enzyme showed high thermal stability and resistance at a different pH. SIGNIFICANCE AND IMPACT OF THE STUDY: The fungus C. echinulata PA3S12MM is an excellent producer of invertases in Vogel medium supplemented with apple peel. The enzyme is promising for industrial application since it has good performance in reusability and inverted sugar production.


Asunto(s)
Cunninghamella , beta-Fructofuranosidasa , Cunninghamella/metabolismo , Estabilidad de Enzimas , Enzimas Inmovilizadas , Fructosa , Concentración de Iones de Hidrógeno , Temperatura , beta-Fructofuranosidasa/metabolismo
6.
J Food Biochem ; 45(4): e13654, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33595123

RESUMEN

The Cunninghamella echinulata PA3S12MM fungus is a great producer of invertases in a growth medium supplemented by apple peels. The enzyme was purified 4.5 times after two chromatographic processes, and it presented a relative molecular mass of 89.2 kDa. The invertase reached maximum activity at pH of 6 and at 60°C, in addition to presenting stability in alkaline pH and thermal activation at 50°C. The enzymatic activity increased in the presence of Mn2+ and dithiothreitol (DTT), while Cu2+ and Z2+ ions inhibited it. Also, DTT showed to protect enzymatic activity. The apparent values for Km , Vmáx , and Kcat for the sucrose hydrolysis were, respectively, 173.8 mmol/L, 908.7 mmol/L min-1 , and 1,388.79 s-1 . The carbohydrate content was of 83.13%. The invertase presented hydrolytic activity over different types of glycosidic bonds, such as α1 â†” 2ß (sucrose), α1 â†’ 4 (polygalacturonic acid), α1 â†’ 4 and α1 â†’ 2 (pectin), and α1 â†” 1 (trehalose), indicating that the enzyme is multifunctional. Thus, the biochemical properties showed by the C. echinulata PA3S12MM suggest a broad industrial application, such as in the biomass hydrolysis or in the food industry. PRACTICAL APPLICATIONS: Invertases are hydrolytic enzymes employed in several industrial sectors. Given their great importance for the economy and several industrial sectors, there is a growing interest in microorganisms producing this enzyme. The analysis of the biochemical properties of invertase in C. echinulata PA3S12MM suggest applications in the food industry. Due to its increased hydrolytic activity, the hydrolysis process of the sucrose may employ invertase for the production of invert sugar. The stability at alkaline pH suggests an application in the development of enzymatic electrodes for the quantification of sucrose in food and beverage. The multifunctional activity may work in the biomass hydrolysis or saccharification of by-products for the extraction of fermentable sugars. The high level of invertase N-linked glycosylation of invertase grants this enzyme thermal stability at high temperatures, in addition to resistance against the action of proteases, which are desirable characteristics for the application of this enzyme in industrial processes.


Asunto(s)
Cunninghamella , beta-Fructofuranosidasa , Concentración de Iones de Hidrógeno , Temperatura
7.
Mol Biol Rep ; 47(6): 4427-4438, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32424521

RESUMEN

Biotechnology offers innovative alternatives for industrial bioprocesses mainly because it uses enzymes that biodegrade the hemicellulose releasing fermentable sugars. Caulobacter crescentus (C. crescentus) has seven genes responsible for xylanolytic cleavage, 5 to ß-xylosidases (EC 3.2.1.37) and 2 for endoxylanases, like xynA2 (CCNA_03137) that encodes Xylanase II (EC 3.2.1.8) of the glycohydrolases-GH10 group. The xynA2 gene was amplified by PCR, cloned into the pTrcHisA vector e efficiently overexpressed in E. coli providing a His-tag fusion protein. Recombinant xylanase (XynA2) was purified by affinity chromatography using a nickel sepharose column and exhibited a single 43 kDa band on SDS-PAGE gel. XynA2 showed an optimum alkaline pH (8) and stability at alkaline pH for 24 h. Although C. crescentus is mesophilic, XynA2 has optimum temperature of 60 °C and is thermo-resistance at 65 °C. XynA maintains 66% of the enzymatic activity at high temperatures (90 °C) without being denatured.The enzyme displayed a xylanolitic activity free of cellulase to xylan from beechwood and it was not inhibited in the presence of 50 µmol mL-1 of xylose. In addition, dithiothreitol (DTT) induced XynA2 activity, as it improved its kinetic parameters by lowering the KM (5.78 µmol mL-1) and increasing the KCat/KM ratio (1.63 U s-1). Finally, C. crescentus XynA2 efficiently hydrolyzed corn straw with high release of reducing sugars that can be applied in different branches of the industry.


Asunto(s)
Caulobacter crescentus/genética , Endo-1,4-beta Xilanasas/biosíntesis , Endo-1,4-beta Xilanasas/aislamiento & purificación , Biomasa , Cromatografía de Afinidad/métodos , Clonación Molecular/métodos , Endo-1,4-beta Xilanasas/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Proteínas Recombinantes/genética , Especificidad por Sustrato , Temperatura , Xilanos/metabolismo , Xilosidasas
8.
Mol Biol Rep ; 47(2): 1499-1505, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31786767

RESUMEN

The role of the clpB gene encoding HSP/chaperone ClpB was evaluated in the multiresistant antibiotic cells of Acinetobacter baumannii (RS4 strain) under stress-induced heat shock and different beta-lactams. The expression of the clpB gene was assessed by qPCR during heat shock at 45 °C and subinhibitory concentrations of ampicillin (30 µg mL-1), amoxicillin + sulbactam (8/12 µg mL-1), cefepime (30 µg mL-1), sulfamethoxazole + trimethoprim (120/8 µg mL-1) and meropenem (18 µg mL-1). The results indicated a transient increase in clpB transcription in all treatments except cefepime. Both in the presence of ampicillin and amoxicillin/sulbactam for 20 min, the mRNA-clpB synthesis was 1.4 times higher than that of the control at time zero. Surprisingly, the mRNA-clpB levels were more than 30-fold higher after 10 min of incubation with meropenem and more than eightfold higher in the presence of trimethoprim/sulfamethoxazole. In addition, western blot assays showed that the RS4 strain treated with meropenem showed a marked increase in ClpB protein expression. Our data indicate that during exposure to beta-lactams, A. baumannii adjusts the transcription levels of the clpB mRNA and protein to respond to stress, suggesting that the chaperone may act as a key cellular component in the presence of antibiotics in this bacterium.


Asunto(s)
Acinetobacter baumannii/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos , Respuesta al Choque Térmico/genética , Regulación hacia Arriba/genética , beta-Lactamas/farmacología , Acinetobacter baumannii/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
9.
Braz. arch. biol. technol ; 63: e20190185, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1132193

RESUMEN

Abstract The second-generation bioethanol employs lignocellulosic materials degraded by microbial cellulases in their production. The fungus Trichoderma reesei is one of the main microorganisms producing cellulases, and its genetic modification can lead to the optimization in obtaining hydrolytic enzymes. This work carried out the deletion of the sequence that encodes the zinc finger motif of the transcription factor ACE1 (cellulase expression repressor I) of the fungus T. reesei RUT-C30. The transformation of the RUT-C30 lineage was confirmed by amplification of the 989 bp fragment relative to the selection marker, and by the absence of the zinc finger region amplification in mutants, named T. reesei RUT-C30Δzface1. The production of cellulases by mutants was compared to RUT-C30 and measured with substrates carboxymethylcellulose (CMC), microcrystalline cellulose (Avicel®) and Whatman filter paper (PF). The results demonstrated that RUT-C30Δzface1 has cellulolytic activity increased 3.2-fold in Avicel and 2.1-fold in CMC and PF. The mutants presented 1.4-fold higher sugar released in the hydrolysis of the biomass assays. These results suggest that the partial deletion of ace1 gene is an important strategy in achieving bioethanol production on an industrial scale at a competitive price in the fuel market.


Asunto(s)
Trichoderma/enzimología , Celulasa/biosíntesis , Dedos de Zinc , Biomasa , Etanol , Biocombustibles
10.
Int J Biol Macromol ; 129: 672-678, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30772412

RESUMEN

Three ß-glucosidases (Pectinex Ultra SP-L, Pectinex Ultra Clear and homemade preparation from Aspergillus niger) were immobilized using different strategies: ionic adsorption on aminated (MANAE)-agarose beads at pH 5, 7, and 9, followed by biocatalysts modification with glutaraldehyde, or on glutaraldehyde pre-activated supports. The pH of the immobilization was altered to allow different enzyme molecule orientations on the support surface. The biocatalysts from Pectinex Ultra SP-L showed the highest thermal and operational stabilities when immobilized on MANAE-agarose-glutaraldehyde at pH 7. The ß-glucosidase from Pectinex Ultra Clear and from A. niger produced best results when immobilized on MANAE-agarose beads at pH 5 and 7, respectively, which was later treated with glutaraldehyde. The best immobilization results using pre-activated supports were observed for the enzyme present in Pectinex Ultra SP-L, to which the highest thermal stabilities were obtained. Remarkably, the enzyme from A. niger, immobilized on MANAE-agarose at pH 9 and subsequently treated with glutaraldehyde, produced the highest stabilization (approximately 560 times more stable than soluble enzyme at 60 °C). Results showed that optimal protocol for ß-glucosidases immobilizations using the glutaraldehyde chemistry must be individually tested and tailored to each type of enzyme.


Asunto(s)
Enzimas Inmovilizadas/química , Glutaral/química , beta-Glucosidasa/química , Aspergillus niger/enzimología , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas , Enzimas Inmovilizadas/antagonistas & inhibidores , Glucosa/farmacología , Temperatura , beta-Glucosidasa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...