Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 413: 125459, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33930971

RESUMEN

2,4-Dinitroanisole (DNAN) is an insensitive munitions compound expected to replace 2,4,6-trinitrotoluene (TNT). The product of DNAN's reduction in the environment is 2,4-diaminoanisole (DAAN), a toxic and carcinogenic aromatic amine. DAAN is known to become irreversibly incorporated into soil natural organic matter (NOM) after DNAN's reduction. Herein, we investigate the reactions between DAAN and NOM under anoxic conditions, using 1,4-benzoquinone (BQ) and methoxybenzoquinone (MBQ) as model humic moieties of NOM. A new method stopped the fast reactions between DAAN and quinones, capturing the fleeting intermediates. We observed that DAAN incorporation into NOM (represented by BQ and MBQ models) is quinone-dependent and occurs via Michael addition, imine (Schiff-base) formation, and azo bond formation. After dimers are formed, incorporation reactions continue, resulting in trimers and tetramers. After 20 days, 56.4% of dissolved organic carbon from a mixture of DAAN (1 mM) and MBQ (3 mM) had precipitated, indicating an extensive polymerization, with DAAN becoming incorporated into high-molecular-weight humic-like compounds. The present work suggests a new approach for DNAN environmental remediation, in which DNAN anaerobic transformation can be coupled to the formation of non-extractable bound DAAN residues in soil organic matter. This process does not require aerobic conditions nor a specific catalyst.

2.
Environ Pollut ; 268(Pt B): 115862, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33120159

RESUMEN

2,4-Dinitroanisole (DNAN) is a component of insensitive munitions (IM), which are replacing traditional explosives due to their improved safety. Incomplete IM combustion releases DNAN onto the soil, where it can leach into the subsurface with rainwater, encounter anoxic conditions, and undergo (a)biotic reduction to aromatic amines 2-methoxy-5-nitroaniline (MENA), 4-methoxy-3-nitroaniline (iMENA, isomer of MENA), and 2,4-diaminoanisole (DAAN). We report here studies of nucleophilic addition mechanisms that may account for the sequestration of aromatic amine daughter products of DNAN into soil organic matter (humus), effectively removing these toxic compounds from the aqueous environment. Because quinones are important moieties in humus, we incubated MENA, iMENA, DAAN, and related analogs with model compounds 1,4-benzoquinone and 2,3-dimethyl-1,4-benzoquinone under anoxic conditions. Mass spectrometry and ultra-high performance liquid chromatography revealed that the aromatic amines had covalently bonded to either carbonyl carbons or ring carbons ß to carbonyl carbons of the quinones, producing a mixture of imines and Michael adducts, respectively. These products formed rapidly and accumulated in the one-to four-day incubations. Nucleophilic addition reactions, which do not require catalysis or oxic conditions, are proposed as a mechanism resulting in the binding of DNAN to soil observed in previous studies. To remediate sites contaminated with DNAN or other nitroaromatics, reducing conditions and humus amendments may promote their immobilization into the soil matrix.


Asunto(s)
Sustancias Explosivas , Suelo , Aminas , Anisoles , Núcleo Familiar , Quinonas
3.
Chemosphere ; 222: 789-796, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30739063

RESUMEN

Explosives, pesticides, and pharmaceuticals contain toxic nitroaromatic compounds that may form even more toxic azo compounds if they encounter reducing conditions in the environment. We investigated the mechanism by which 4,4'-dimethoxyazobenzene forms in anaerobic sludge incubations of 4-nitroanisole, an analog for the insensitive munitions compound 2,4-dinitroanisole (DNAN). Because studies have reported the mechanism to involve the coupling of reduced nitroaromatic intermediates, specifically aromatic amines and nitrosoaromatics, by nucleophilic processes, we abiotically paired 10 mM 4-aminoanisole with 2 mM 4-nitrosoanisole in nitrogen-flushed microcosms. However, only 7 µM of 4,4'-dimethoxyazobenzene had formed after 24 h. We identified the major product to be 4-methoxy-4'-nitrosodiphenylamine. Repeating this experiment in phosphate buffer at pH 5.1, 7.1, and 8.6 demonstrated that the formation of this unexpected product is acid catalyzed. We found that 4-methoxy-4'-nitrosodiphenylamine is more toxic than 4,4'-dimethoxyazobenzene to the bioluminescent bacterium Aliivibrio fischeri, with IC50 values of 0.1 µM and 0.5 µM, respectively. Both products are several orders of magnitude more toxic than reduced 4-nitroanisole intermediates 4-aminoanisole and 4-nitrosoanisole, as well as DNAN and its aromatic amine metabolites. Six-fold more 4,4'-dimethoxyazobenzene formed when we incubated 4-nitrosoanisole with ascorbic acid, a reducing agent, than when we incubated 4-nitrosoanisole with 4-aminoanisole in the absence of ascorbic acid. We therefore suspect that 4-hydroxylaminoanisole, the first reduction product of 4-nitrosoanisole, is a better nucleophile than 4-aminoanisole and couples more readily with 4-nitrosoanisole. Slightly basic and reducing conditions can prevent the formation and persistence of toxic coupling products on sites contaminated with nitroaromatics, i.e. DNAN-contaminated firing ranges.


Asunto(s)
Anisoles/química , Aliivibrio fischeri/efectos de los fármacos , Aminas/química , Anisoles/toxicidad , Compuestos Azo/química , Sustancias Explosivas/química , Sustancias Explosivas/toxicidad , Oxidación-Reducción , Aguas del Alcantarillado/química
4.
Chemosphere ; 195: 372-380, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29274576

RESUMEN

Nitroaromatic compounds are widely used in agricultural pesticides, pharmaceuticals, military explosives, and other applications. They enter the environment via manufacturing and municipal wastewater discharges and releases from agricultural and military operations. Because of their ubiquity and toxicity, they are considered an important class of environmental contaminants. Nitroaromatics are known to undergo reductive transformation to aromatic amines, and under aerobic conditions they are susceptible to coupling reactions which may lead to their irreversible incorporation into soil organic matter. However, there is also evidence of coupling reactions in the absence of oxygen between reduced intermediates of the insensitive munitions compound 2,4-dinitroanisole, leading to the formation of azo dimers. The formation of such products is a concern since they may be more toxic than the original nitroaromatic compounds. The objective of this research is to provide evidence of the anaerobic formation of azo coupling products. 4-Nitroanisole was used as a model compound and was spiked into incubations containing anaerobic granular sludge with H2 as the electron donor. Using liquid chromatography, UV-Vis spectroscopy, and mass spectrometry, the formation of the azo dimer 4,4'-dimethoxyazobenzene was confirmed. However, due to the instability of the azo bond under the reducing conditions of our incubations, the azo dimer did not accumulate. Consequently, 4-aminoanisole was the major product formed in our experiment. Other minor suspected coupling products were also detected in our incubations. The results provide clear evidence for the temporal formation of at least one azo dimer in the anaerobic reduction of a model nitroaromatic compound.


Asunto(s)
Anisoles/química , Contaminantes Ambientales/química , Aminas/química , Anaerobiosis , Compuestos Azo/química , Cromatografía Liquida , Sustancias Explosivas/química , Espectrometría de Masas , Aguas del Alcantarillado
5.
Biomaterials ; 31(31): 8072-80, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20688389

RESUMEN

Strategies to control the release rate of bioactive signals from tissue engineering scaffolds are essential for tissue regeneration and tissue engineering applications. Here we report on a strategy to achieve temporal control over nanoparticle release from biomaterials using cell-secreted proteases. This cell-triggered release approach utilizes peptides that are degraded by matrix metalloproteinases (MMPs) at different rates to immobilize nanoparticles directly to the biomaterial surface. Thus, the peptide-immobilized nanoparticles are released with temporal control through the action of cell-released MMPs. We found that release rates of peptide-immobilized nanoparticles were a function of peptide sensitivity to proteases, the number of tethers between the nanoparticle and the surface and the concentration of proteases used to induce release. Cellular internalization of the peptide-immobilized nanoparticles was also a function of the peptide sensitivity to proteases, the number of tethers between the nanoparticle and the surface and MMP expression profile of the cells. Similar trends were observed for peptide-immobilized nanoparticles inside micro-porous hydrogels, indicating protease sensitive tethers are effective in controlling release rate and internalization of nanoparticles. Such a temporal delivery strategy of nanoparticles loaded with therapeutic payloads (e.g. protein, DNA, siRNA) can be an ideal means to guide tissue formation.


Asunto(s)
Preparaciones de Acción Retardada/farmacología , Células Madre Mesenquimatosas/enzimología , Nanopartículas/química , Péptido Hidrolasas/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Hidrogeles/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Microscopía Fluorescente , Tamaño de la Partícula , Péptidos/metabolismo , Polietilenglicoles/farmacología , Polimetil Metacrilato/farmacología , Porosidad/efectos de los fármacos , Azufre/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...