Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 19(11): 1477-1488, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27694995

RESUMEN

De novo mutations in CHD8 are strongly associated with autism spectrum disorder, but the basic biology of CHD8 remains poorly understood. Here we report that Chd8 knockdown during cortical development results in defective neural progenitor proliferation and differentiation that ultimately manifests in abnormal neuronal morphology and behaviors in adult mice. Transcriptome analysis revealed that while Chd8 stimulates the transcription of cell cycle genes, it also precludes the induction of neural-specific genes by regulating the expression of PRC2 complex components. Furthermore, knockdown of Chd8 disrupts the expression of key transducers of Wnt signaling, and enhancing Wnt signaling rescues the transcriptional and behavioral deficits caused by Chd8 knockdown. We propose that these roles of Chd8 and the dynamics of Chd8 expression during development help negotiate the fine balance between neural progenitor proliferation and differentiation. Together, these observations provide new insights into the neurodevelopmental role of Chd8.


Asunto(s)
Trastorno del Espectro Autista/genética , Ciclo Celular/genética , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Neurogénesis , Transcripción Genética , Vía de Señalización Wnt/genética , Animales , División Celular/genética , Femenino , Ratones , Células-Madre Neurales/metabolismo
2.
EMBO Rep ; 16(10): 1308-17, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26338476

RESUMEN

Complexins are synaptic SNARE complex-binding proteins that cooperate with synaptotagmins in activating Ca(2+)-stimulated, synaptotagmin-dependent synaptic vesicle exocytosis and in clamping spontaneous, synaptotagmin-independent synaptic vesicle exocytosis. Here, we show that complexin sequences are conserved in some non-metazoan unicellular organisms and in all metazoans, suggesting that complexins are a universal feature of metazoans that predate metazoan evolution. We show that complexin from Nematostella vectensis, a cnidarian sea anemone far separated from mammals in metazoan evolution, functionally replaces mouse complexins in activating Ca(2+)-triggered exocytosis, but is unable to clamp spontaneous exocytosis. Thus, the activating function of complexins is likely conserved throughout metazoan evolution.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Evolución Biológica , Coanoflagelados/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica/genética , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Coanoflagelados/química , Secuencia Conservada , Exocitosis , Ratones , Filogenia , Estructura Secundaria de Proteína , Proteínas SNARE , Transmisión Sináptica , Sinaptotagminas/genética , Sinaptotagminas/fisiología
3.
J Neurosci ; 33(23): 9769-80, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23739973

RESUMEN

Synaptotagmin-12 (Syt12) is an abundant synaptic vesicle protein that--different from other synaptic vesicle-associated synaptotagmins--does not bind Ca(2+). Syt12 is phosphorylated by cAMP-dependent protein kinase-A at serine-97 in an activity-dependent manner, suggesting a function for Syt12 in cAMP-dependent synaptic plasticity. To test this hypothesis, we here generated (1) Syt12 knock-out mice and (2) Syt12 knockin mice carrying a single amino-acid substitution [the serine-97-to-alanine- (S97A)-substitution]. Both Syt12 knock-out mice and Syt12 S97A-knockin mice were viable and fertile, and exhibited no measurable change in basal synaptic strength or short-term plasticity as analyzed in cultured cortical neurons or in acute hippocampal slices. However, both Syt12 knock-out and Syt12 S97A-knockin mice displayed a major impairment in cAMP-dependent mossy-fiber long-term potentiation (LTP) in the CA3 region of the hippocampus. This impairment was observed using different experimental configurations for inducing and monitoring mossy-fiber LTP. Moreover, although the Syt12 knock-out had no effect on the short-term potentiation of synaptic transmission induced by the adenylate-cyclase activator forskolin in cultured cortical neurons and in the CA1 region of the hippocampus, both the Syt12 knock-out and the Syt12 S97A-knockin impaired the long-term increase in mossy-fiber synaptic transmission induced by forskolin. Thus, Syt12 is essential for cAMP-dependent presynaptic LTP at mossy-fiber synapses, and a single amino-acid substitution that blocks the cAMP-dependent phosphorylation of Syt12 is sufficient to impair the function of Syt12 in mossy-fiber LTP, suggesting that cAMP-dependent phosphorylation of Syt12 on serine-97 contributes to the induction of mossy-fiber LTP.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Potenciación a Largo Plazo/fisiología , Fibras Musgosas del Hipocampo/metabolismo , Sinaptotagminas/metabolismo , Animales , Células Cultivadas , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/fisiología
4.
J Neurosci ; 32(8): 2877-85, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-22357870

RESUMEN

Complexins are small soluble proteins that bind to assembling SNARE complexes during synaptic vesicle exocytosis, which in turn mediates neurotransmitter release. Complexins are required for clamping of spontaneous "mini " release and for the priming and synaptotagmin-dependent Ca(2+) triggering of evoked release. Mammalian genomes encode four complexins that are composed of an N-terminal unstructured sequence that activates synaptic exocytosis, an accessory α-helix that clamps exocytosis, an essential central α-helix that binds to assembling SNARE complexes and is required for all of its functions, and a long, apparently unstructured C-terminal sequence whose function remains unclear. Here, we used cultured mouse neurons to show that the C-terminal sequence of complexin-1 is not required for its synaptotagmin-activating function but is essential for its priming and clamping functions. Wild-type complexin-3 did not clamp exocytosis but nevertheless fully primed and activated exocytosis. Strikingly, exchanging the complexin-1 C terminus for the complexin-3 C terminus abrogated clamping, whereas exchanging the complexin-3 C terminus for the complexin-1 C terminus enabled clamping. Analysis of point mutations in the complexin-1 C terminus identified two single amino-acid substitutions that impaired clamping without altering the activation function of complexin-1. Examination of release induced by stimulus trains revealed that clamping-deficient C-terminal complexin mutants produced a modest relative increase in delayed release. Overall, our results show that the relatively large C-terminal complexin-1 sequence acts in priming and clamping synaptic exocytosis and demonstrate that the clamping function is not conserved in complexin-3, presumably because of its distinct C-terminal sequences.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Calcio/metabolismo , Estimulación Eléctrica , Exocitosis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Sinapsis/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Animales Recién Nacidos , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/genética , Biofisica , Células Cultivadas , Corteza Cerebral/citología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Exocitosis/efectos de los fármacos , Exocitosis/genética , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Lentivirus/genética , Masculino , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Mutación Puntual/fisiología , Estructura Secundaria de Proteína/genética , Estructura Secundaria de Proteína/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/genética , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/fisiología , Sinaptotagminas , Transducción Genética/métodos
5.
Neuron ; 73(2): 260-7, 2012 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-22284181

RESUMEN

Long-term potentiation (LTP) is a compelling synaptic correlate of learning and memory. LTP induction requires NMDA receptor (NMDAR) activation, which triggers SNARE-dependent exocytosis of AMPA receptors (AMPARs). However, the molecular mechanisms mediating AMPAR exocytosis induced by NMDAR activation remain largely unknown. Here, we show that complexin, a protein that regulates neurotransmitter release via binding to SNARE complexes, is essential for AMPAR exocytosis during LTP but not for the constitutive AMPAR exocytosis that maintains basal synaptic strength. The regulated postsynaptic AMPAR exocytosis during LTP requires binding of complexin to SNARE complexes. In hippocampal neurons, presynaptic complexin acts together with synaptotagmin-1 to mediate neurotransmitter release. However, postsynaptic synaptotagmin-1 is not required for complexin-dependent AMPAR exocytosis during LTP. These results suggest a complexin-dependent molecular mechanism for regulating AMPAR delivery to synapses, a mechanism that is surprisingly similar to presynaptic exocytosis but controlled by regulators other than synaptotagmin-1.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Exocitosis/fisiología , Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Densidad Postsináptica/metabolismo , Receptores AMPA/metabolismo , Animales , Región CA1 Hipocampal/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Neuronas/metabolismo , Transporte de Proteínas/fisiología , Proteínas SNARE/metabolismo , Transmisión Sináptica/fisiología , Sinaptotagmina I/metabolismo
6.
Neuron ; 68(5): 907-20, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21145004

RESUMEN

Complexin activates and clamps neurotransmitter release; impairing complexin function decreases synchronous, but increases spontaneous and asynchronous synaptic vesicle exocytosis. Here, we show that complexin-different from the Ca(2+) sensor synaptotagmin-1-activates synchronous exocytosis by promoting synaptic vesicle priming, but clamps spontaneous and asynchronous exocytosis-similar to synaptotagmin-1-by blocking a secondary Ca(2+) sensor. Activation and clamping functions of complexin depend on distinct, autonomously acting sequences, namely its N-terminal region and accessory α helix, respectively. Mutations designed to test whether the accessory α helix of complexin clamps exocytosis by inserting into SNARE-complexes support this hypothesis, suggesting that the accessory α helix blocks completion of trans-SNARE-complex assembly until Ca(2+) binding to synaptotagmin relieves this block. Moreover, a juxtamembranous mutation in the SNARE-protein synaptobrevin-2, which presumably impairs force transfer from nascent trans-SNARE complexes onto fusing membranes, also unclamps spontaneous fusion by disinhibiting a secondary Ca(2+) sensor. Thus, complexin performs mechanistically distinct activation and clamping functions that operate in conjunction with synaptotagmin-1 by controlling trans-SNARE-complex assembly.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Señalización del Calcio/fisiología , Exocitosis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Estructura Secundaria de Proteína/fisiología , Sinaptotagmina I/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Células Cultivadas , Proteínas Sensoras del Calcio Intracelular/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Mutantes , Proteínas SNARE/metabolismo , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...