Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell ; 186(25): 5638-5655.e25, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065083

RESUMEN

Photosynthesis is central to food production and the Earth's biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic alga Chlamydomonas reinhardtii, we identify with high confidence (false discovery rate [FDR] < 0.11) 70 poorly characterized genes required for photosynthesis. We then enable the functional characterization of these genes by providing a resource of proteomes of mutant strains, each lacking one of these genes. The data allow assignment of 34 genes to the biogenesis or regulation of one or more specific photosynthetic complexes. Further analysis uncovers biogenesis/regulatory roles for at least seven proteins, including five photosystem I mRNA maturation factors, the chloroplast translation factor MTF1, and the master regulator PMR1, which regulates chloroplast genes via nuclear-expressed factors. Our work provides a rich resource identifying regulatory and functional genes and placing them into pathways, thereby opening the door to a system-level understanding of photosynthesis.


Asunto(s)
Chlamydomonas reinhardtii , Fotosíntesis , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotosíntesis/genética , Regulación de la Expresión Génica , Proteínas/genética , Proteínas/metabolismo , Mutación , Ribosomas/genética , Ribosomas/metabolismo , ARN Mensajero/genética
2.
G3 (Bethesda) ; 10(9): 3229-3242, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32694199

RESUMEN

Cell growth is driven by the synthesis of proteins, genes, and other cellular components. Defining processes that limit biosynthesis rates is fundamental for understanding the determinants of cell physiology. Here, we analyze the consequences of engineering cells to express extremely high levels of mCherry proteins, as a tool to define limiting processes that fail to adapt upon increasing biosynthetic demands. Protein-burdened cells were transcriptionally and phenotypically similar to mutants of the Mediator, a transcription coactivator complex. However, our binding data suggest that the Mediator was not depleted from endogenous promoters. Burdened cells showed an overall increase in the abundance of the majority of endogenous transcripts, except for highly expressed genes. Our results, supported by mathematical modeling, suggest that wild-type cells transcribe highly expressed genes at the maximal possible rate, as defined by the transcription machinery's physical properties. We discuss the possible cellular benefit of maximal transcription rates to allow a coordinated optimization of cell size and cell growth.


Asunto(s)
Factores de Transcripción , Transcripción Genética , Ciclo Celular , Proliferación Celular , Regiones Promotoras Genéticas , Factores de Transcripción/genética
3.
Elife ; 62017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28857745

RESUMEN

Growing cells coordinate protein translation with metabolic rates. Central to this coordination is ribosome production. Ribosomes drive cell growth, but translation of ribosomal proteins competes with production of non-ribosomal proteins. Theory shows that cell growth is maximized when all expressed ribosomes are constantly translating. To examine whether budding yeast function at this limit of full ribosomal usage, we profiled the proteomes of cells growing in different environments. We find that cells produce excess ribosomal proteins, amounting to a constant ≈8% of the proteome. Accordingly, ≈25% of ribosomal proteins expressed in rapidly growing cells does not contribute to translation. Further, this fraction increases as growth rate decreases and these excess ribosomal proteins are employed when translation demands unexpectedly increase. We suggest that steadily growing cells prepare for conditions that demand increased translation by producing excess ribosomes, at the expense of lower steady-state growth rate.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteoma/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Perfilación de la Expresión Génica , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos/genética , Biosíntesis de Proteínas , Proteoma/metabolismo , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética , Ribosomas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
FEMS Yeast Res ; 16(7)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27650704

RESUMEN

The minimal description of a growing cell consists of self-replicating ribosomes translating the cellular proteome. While neglecting all other cellular components, this model provides key insights into the control and limitations of growth rate. It shows, for example, that growth rate is maximized when ribosomes work at full capacity, explains the linear relation between growth rate and the ribosome fraction of the proteome and defines the maximal possible growth rate. This ribosome-centered model also highlights the challenge of coordinating cell growth with related processes such as cell division or nutrient production. Coordination is promoted when ribosomes don't translate at maximal capacity, as it allows escaping strict exponential growth. Recent data support the notion that multiple cellular processes limit growth. In particular, increasing transcriptional demand may be as deleterious as increasing translational demand, depending on growth conditions. Consistent with the idea of trade-off, cells may forgo maximal growth to enable more efficient interprocess coordination and faster adaptation to changing conditions.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas/metabolismo , Adaptación Fisiológica , Modelos Biológicos
5.
Cell Rep ; 14(1): 22-31, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26725116

RESUMEN

The economy of protein production is central to cell physiology, being intimately linked with cell division rate and cell size. Attempts to model cellular physiology are limited by the scarcity of experimental data defining the molecular processes limiting protein expression. Here, we distinguish the relative contribution of gene transcription and protein translation to the slower proliferation of budding yeast producing excess levels of unneeded proteins. In contrast to widely held assumptions, rapidly growing cells are not universally limited by ribosome content. Rather, transcription dominates cost under some conditions (e.g., low phosphate), translation in others (e.g., low nitrogen), and both in other conditions (e.g., rich media). Furthermore, cells adapted to enforced protein production by becoming larger and increasing their endogenous protein levels, suggesting limited competition for common resources. We propose that rapidly growing cells do not exhaust their resources to maximize growth but maintain sufficient reserves to accommodate changing requirements.


Asunto(s)
Regulación Fúngica de la Expresión Génica/fisiología , Biosíntesis de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Transcripción Genética/fisiología
6.
Sci Rep ; 3: 2189, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23852038

RESUMEN

Genome instability is a hallmark of cancer. Common fragile sites (CFSs) are specific regions in the human genome that are sensitive to replication stress and are prone to genomic instability in different cancer types. Here we molecularly cloned a new CFS, FRA11H, in 11q13. The genomic region of FRA11H harbors a hotspot of chromosomal breakpoints found in different types of cancer, indicating that this region is unstable during cancer development. We further found that FRA11H is a hotspot for integrations of Murine Leukemia Virus (MLV)-based vectors, following CD34+ infections in vitro as well as ex-vivo during gene therapy trials. Importantly, we found that the MLV-based vector infection in-vitro leads to replication perturbation, DNA damage and increased CFS expression. This suggests that infection by MLV-based vectors leads to replication-induced genome instability, raising further concerns regarding the use of retroviral vectors in gene therapy trials.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , Replicación del ADN , Vectores Genéticos/genética , Virus de la Leucemia Murina/genética , Integración Viral/genética , Línea Celular , Cromosomas Humanos Par 11/genética , Roturas del ADN de Doble Cadena , Orden Génico , Inestabilidad Genómica , Humanos , Metafase , Transfección
7.
Science ; 334(6061): 1408-12, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22158820

RESUMEN

Cells use transporters of different affinities to regulate nutrient influx. When nutrients are depleted, low-affinity transporters are replaced by high-affinity ones. High-affinity transporters are helpful when concentrations of nutrients are low, but the advantage of reducing their abundance when nutrients are abundant is less clear. When we eliminated such reduced production of the Saccharomyces cerevisiae high-affinity transporters for phosphate and zinc, the elapsed time from the initiation of the starvation program until the lack of nutrients limited growth was shortened, and recovery from starvation was delayed. The latter phenotype was rescued by constitutive activation of the starvation program. Dual-transporter systems appear to prolong preparation for starvation and to facilitate subsequent recovery, which may optimize sensing of nutrient depletion by integrating internal and external information about nutrient availability.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Catión/genética , Medios de Cultivo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Homeostasis , Fenotipo , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Simportadores de Protón-Fosfato/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA