Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37631325

RESUMEN

Metformin is the most commonly prescribed glucose-lowering drug for the treatment of type 2 diabetes. The aim of this study was to investigate whether metformin is capable of impeding the oxidation of LDL, a crucial step in the development of endothelial dysfunction and atherosclerosis. LDL was oxidized by addition of CuCl2 in the presence of increasing concentrations of metformin. The extent of LDL oxidation was assessed by measuring lipid hydroperoxide and malondialdehyde concentrations, relative electrophoretic mobilities, and oxidation-specific immune epitopes. Cytotoxicity of oxLDL in the vascular endothelial cell line EA.hy926 was assessed using the alamarBlue viability test. Quantum chemical calculations were performed to determine free energies of reactions between metformin and radicals typical for lipid oxidation. Metformin concentration-dependently impeded the formation of lipid hydroperoxides, malondialdehyde, and oxidation-specific immune epitopes when oxidation of LDL was initiated by addition of Cu2+. The cytotoxicity of oxLDL was reduced when it was obtained under increasing concentrations of metformin. The quantum chemical calculations revealed that only the reaction of metformin with hydroxyl radicals is exergonic, whereas the reactions with hydroperoxyl radicals or superoxide radical anions are endergonic. Metformin, beside its glucose-lowering effect, might be a suitable agent to impede the development of atherosclerosis and associated CVD. This is due to its capability to impede LDL oxidation, most likely by scavenging hydroxyl radicals.

2.
J Cardiovasc Pharmacol Ther ; 26(6): 702-713, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34342526

RESUMEN

BACKGROUND: Vascular stiffness and endothelial dysfunction are accelerated by acute myocardial infarction (AMI) and subsequently increase the risk for recurrent coronary events. AIM: To explore whether remote ischemic perconditioning (RIPerc) protects against coronary and aorta endothelial dysfunction as well as aortic stiffness following AMI. METHODS: Male OFA-1 rats were subjected to 30 min of occlusion of the left anterior descending artery (LAD) followed by reperfusion either 3 or 28 days with or without RIPerc. Three groups: (1) sham operated (Sham, without LAD occlusion); (2) myocardial ischemia and reperfusion (MIR) and (3) MIR + RIPerc group with 3 cycles of 5 minutes of IR on hindlimb performed during myocardial ischemia were used. Assessment of vascular reactivity in isolated septal coronary arteries (non-occluded) and aortic rings as well as aortic stiffness was assessed by wire myography either 3 or 28 days after AMI, respectively. Markers of pro-inflammatory cytokines, adhesion molecules were assessed by RT-qPCR and ELISA. RESULTS: MIR promotes impaired endothelial-dependent relaxation in septal coronary artery segments, increased aortic stiffness and adverse left ventricular remodeling. These changes were markedly attenuated in rats treated with RIPerc and associated with a significant decline in P-selectin, IL-6 and TNF-α expression either in infarcted or non-infarcted myocardial tissue samples. CONCLUSIONS: Our study for the first time demonstrated that RIPerc alleviates MIR-induced coronary artery endothelial dysfunction in non-occluded artery segments and attenuates aortic stiffness in rats. The vascular protective effects of RIPerc are associated with ameliorated inflammation and might therefore be caused by reduced inflammatory signaling.


Asunto(s)
Precondicionamiento Isquémico Miocárdico/métodos , Infarto del Miocardio/terapia , Isquemia Miocárdica/prevención & control , Rigidez Vascular , Animales , Vasos Coronarios/fisiopatología , Citocinas/metabolismo , Inflamación , Masculino , Reperfusión Miocárdica/métodos , Daño por Reperfusión Miocárdica/prevención & control , Ratas
3.
Acta Biomater ; 134: 276-288, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34329787

RESUMEN

Currently available synthetic small diameter vascular grafts reveal low patency rates due to thrombosis and intimal hyperplasia. Biofunctionalized grafts releasing nitric oxide (NO) in situ may overcome these limitations. In this study, a drug-eluting vascular graft was designed by blending polycaprolactone (PCL) with S-nitroso-human-serum-albumin (S-NO-HSA), a nitric oxide donor with prolonged half-life. PCL-S-NO-HSA grafts and patches were fabricated via electrospinning. The fabrication process was optimized. Patches were characterized in vitro for their morphology, drug release, biomechanics, inflammatory effects, cell proliferation, and expression of adhesion molecules. The selected optimized formulation (8%PCL-S-NO-HSA) had superior mechanical/morphological properties with high protein content revealing extended NO release (for 28 days). 8%PCL-S-NO-HSA patches significantly promoted endothelial cell proliferation while limiting smooth muscle cell proliferation. Expression of adhesion molecules (ICAM-1, VCAM-1) and pro-inflammatory macrophage/cytokine markers (CD80, IL-1α, TNF-α) was significantly reduced. 8%PCL-S-NO-HSA patches had superior immunomodulatory properties by up-regulating anti-inflammatory cytokines (IL-10) and M2 macrophage marker (CD163) at final time points. Grafts were further evaluated in a small rodent model as aortic implants up to 12 weeks. Grafts were assessed by magnetic resonance imaging angiography (MRI) in vivo and after retrieval by histology. All grafts remained 100 % patent with no signs of thrombosis or calcification. 8%PCL-S-NO-HSA vascular grafts supported rapid endothelialization, whereas smooth muscle cell proliferation was hampered in earlier phases. This study indicates that 8%PCL-S-NO-HSA grafts effectively support long-term in situ release of bioactive NO. The beneficial effects observed can be promising features for long-term success of small diameter vascular grafts. STATEMENT OF SIGNIFICANCE: Despite extensive research in the field of small diameter vascular graft replacement, there is still no appropriate substitute to autografts yet. Various limitations are associated with currently available synthetic vascular grafts such as thrombogenicity and intimal hyperplasia. Therefore, developing new generations of such conduits has become a major focus of research. One of the most significant signaling molecules that are involved in homeostasis of the vascular system is nitric oxide. The new designed nitric-oxide eluting vascular grafts described in this study induce rapid surface endothelialization and late migration of SMCs into the graft wall. These beneficial effects have potential to improve current limitations of small diameter vascular grafts.


Asunto(s)
Preparaciones Farmacéuticas , Injerto Vascular , Prótesis Vascular , Donantes de Óxido Nítrico , Poliésteres , Albúmina Sérica Humana
4.
Sci Rep ; 6: 34534, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27698480

RESUMEN

Bacterial infection and sepsis are common complications of chronic kidney disease (CKD). A vicious cycle of increased gut permeability, endotoxemia, inadequate activation of the innate immune system and resulting innate immune dysfunction is hypothesized. We assessed endotoxemia, neutrophil function and its relation to oxidative stress, inflammation and gut permeability in patients with CKD grade 3-5 without renal replacement therapy (CKD group, n = 57), patients with CKD stage 5 undergoing haemodialysis (HD, n = 32) or peritoneal dialysis (PD, n = 28) and patients after kidney transplantation (KT, n = 67) in a cross-sectional observational study. In HD patients, endotoxin serum levels were elevated and neutrophil phagocytic capacity was decreased compared to all other groups. Patients on HD had a significantly higher mortality, due to infections during follow up, compared to PD (p = 0.022). Oxidative stress, neutrophil energy charge, systemic inflammation and gut permeability could not completely explain these differences. Our findings suggest that dialysis modality and not renal function per se determine the development of neutrophil dysfunction and endotoxemia in CKD-patients. HD patients are particularly prone to neutrophil dysfunction and endotoxemia whereas neutrophil function seems to improve after KT. Multi-target approaches are therefore warranted to improve neutrophil function and potentially reduce the rate of infections with patients undergoing haemodialysis.


Asunto(s)
Infecciones Bacterianas/sangre , Endotoxemia/sangre , Neutrófilos/metabolismo , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/terapia , Terapia de Reemplazo Renal , Adulto , Anciano , Anciano de 80 o más Años , Infecciones Bacterianas/etiología , Infecciones Bacterianas/mortalidad , Infecciones Bacterianas/terapia , Estudios Transversales , Endotoxemia/etiología , Endotoxemia/mortalidad , Endotoxemia/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/patología , Estrés Oxidativo , Insuficiencia Renal Crónica/mortalidad
5.
Chem Phys Lipids ; 184: 38-41, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25240239

RESUMEN

Plaque formation is confined to the arterial trunk. We assumed that due to the higher aeration of arterial compared to venous blood, higher levels of the atherogenic agent oxidized LDL might be present in arteries, contributing to plaque formation. We aimed to compare (i) the basal oxidative status of LDL in arterial and venous blood and (ii) the susceptibility of arterial and venous LDL to oxidation. The basal oxidative status of LDL was determined by measuring lipid hydroperoxide (LPO) concentrations, plasma levels of auto-antibodies against oxidized LDL, and by measuring oxidation-specific epitopes on LDL particles. The oxidizability of arterial vs. venous LDL (catalyzed by copper) was estimated by monitoring the time-course of conjugated dienes formation. Interestingly, we found the same basal oxidative status of LDL in arterial and venous plasma. LPO concentrations and levels of auto-antibodies against oxidized LDL were similar in arterial and venous plasma and amounts of oxidation-specific epitopes were similar on the respective LDL particles. Moreover, we found similar susceptibilities of arterial and venous LDL to (copper-mediated) oxidation. Lag-times until the onset of conjugated diene formation were slightly shorter in arterial compared to venous LDL in the presence of 5 µM, but not in the presence of 1 µM CuCl2. Additionally, we found significantly higher levels of the atherogenic lipoprotein(a) in arterial plasma. We conclude that not higher oxidizability of arterial LDL but higher arterial lipoprotein(a) levels might help to explain why sclerosis is confined to the arterial trunk.


Asunto(s)
Arterias/metabolismo , Inmunoensayo , Lipoproteínas LDL/sangre , Venas/metabolismo , Anciano , Anticuerpos Monoclonales/inmunología , Autoanticuerpos/sangre , Cobre/química , Epítopos/análisis , Epítopos/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
Chem Phys Lipids ; 183: 18-21, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24835738

RESUMEN

Recent studies suggest that ozone is present in atherosclerotic lesions. Since these lesions are characterized by a dramatic accumulation of low-density lipoprotein (LDL), we aimed to investigate whether ozone is capable of oxidizing LDL, thereby rendering this lipoprotein atherogenic. Lipid hydroperoxide (LPO) concentrations and thiobarbituric acid reactive substances (TBARS) were measured to assess the oxidative status of the lipid part of LDL. Relative electrophoretic mobility (REM) and oxidation-specific immune epitopes were measured to assess the oxidative status of the protein part (apoB) of the LDL particle. Ozone turned out to be a potent oxidant of LDL. LPO concentrations, TBARS, REM, and oxidation-specific immune epitopes significantly increased upon ozonization. Our results suggest that ozonization of LDL may be a novel pathway which supports atherogenesis. Ozone is capable of oxidizing the lipid part of LDL, followed by immediate oxidation of the protein part of LDL, rendering the lipoprotein atherogenic.


Asunto(s)
Lipoproteínas LDL/química , Ozono/química , Humanos , Cinética , Masculino , Oxidación-Reducción
7.
Atherosclerosis ; 172(2): 239-46, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15019533

RESUMEN

There is accumulating evidence that LDL oxidation is essential for atherogenesis, and that antioxidants that prevent this oxidation may either slow down or prevent atherogenesis. In the present study, we found that Commiphora mukul and its cholesterol-lowering component, guggulsterone, effectively inhibited LDL oxidation mediated by either catalytic copper ions, free radicals generated with the azo compound 2,2'-azobis-(2-amidinopropane)dihydrochloride (AAPH), soybean lipoxygenase enzymatically, or mouse peritoneal macrophages. This inhibition was assessed by the decrease in the following parameters describing LDL oxidation: conjugated dienes, relative electrophoretic mobility (REM), thiobarbituric acid reactive substances, lipid hydroperoxides, oxidation-specific immune epitopes as detected with a monoclonal antibody against oxidized LDL, and the accumulation of LDL derived cholesterol esters in mouse peritoneal macrophages. We concluded that C. mukul and its lipid-lowering component, guggulsterone, significantly inhibit LDL oxidation. The combination of antioxidant and lipid-lowering properties of C. mukul and guggulsterone makes them especially beneficial against atherogenesis.


Asunto(s)
Anticolesterolemiantes/farmacología , Commiphora , Hipolipemiantes/farmacología , Lipoproteínas LDL/metabolismo , Pregnenodionas/farmacología , Amidinas/farmacología , Animales , Compuestos Azo/farmacología , Células Cultivadas , Colesterol/análisis , Ésteres del Colesterol/análisis , Cobre/farmacología , Relación Dosis-Respuesta a Droga , Electroforesis , Epítopos/análisis , Radicales Libres/farmacología , Lipooxigenasa/farmacología , Macrófagos Peritoneales/metabolismo , Ratones , Oxidación-Reducción/efectos de los fármacos , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
8.
Clin Chem Lab Med ; 40(1): 15-20, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11916265

RESUMEN

To determine whether the sialic acid (SA) content of the low-density lipoprotein (LDL) is related to the plasma concentration of autoantibodies to oxidized LDL (oxLDL), we measured the SA content of LDL and the concentrations of oxLDL and autoantibodies to oxLDL in plasma of 20 apparently healthy subjects and 20 patients with advanced coronary atherosclerosis. In the healthy subjects the SA content of LDL correlated positively with plasma concentration of autoantibodies to oxLDL. In agreement with the literature the decreased SA content of LDL was associated with an increased fraction of oxLDL; a decreased fraction of oxLDL was associated with an increased plasma concentration of autoantibodies to oxLDL. In the patients the SA content of LDL and plasma concentrations of oxLDL and autoantibodies to oxLDL were not related. We conclude that the SA content of LDL correlates positively with plasma concentration of autoantibodies to oxLDL in healthy subjects. However, this association may vary depending on the stage of atherogenesis. Although our results suggest dependence of LDL SA content on the clearance of oxidatively modified (desialylated and oxidized) LDL from blood by autoantibodies to oxLDL, the mechanisms regulating the SA content of LDL await further studies.


Asunto(s)
Arteriosclerosis/sangre , Arteriosclerosis/inmunología , Autoanticuerpos/inmunología , Lipoproteínas LDL/sangre , Lipoproteínas LDL/química , Lipoproteínas LDL/inmunología , Ácido N-Acetilneuramínico/análisis , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...