Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(7): 073002, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35922325

RESUMEN

We present the design and implementation of a new, modular gas target suitable for high-order harmonic generation using high average power lasers. To ensure thermal stability in this high heat load environment, we implement an appropriate liquid cooling system. The system can be used in multiple-cell configurations, allowing us to control the cell length and aperture size. The cell design was optimized with heat and flow simulations for thermal characteristics, vacuum compatibility, and generation medium properties. Finally, the cell system was experimentally validated by conducting high-order harmonic generation measurements using the 100 kHz high average power HR-1 laser system at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI ALPS) facility. Such a robust, versatile, and stackable gas cell arrangement can easily be adapted to different experimental geometries in both table-top laboratory systems and user-oriented facilities, such as ELI ALPS.

2.
Sci Rep ; 12(1): 13668, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953509

RESUMEN

Ultrafast plasma dynamics play a pivotal role in the relativistic high harmonic generation, a phenomenon that can give rise to intense light fields of attosecond duration. Controlling such plasma dynamics holds key to optimize the relevant sub-cycle processes in the high-intensity regime. Here, we demonstrate that the optimal coherent combination of two intense ultrashort pulses centered at two-colors (fundamental frequency, [Formula: see text] and second harmonic, [Formula: see text]) can lead to an optimal shape in relativistic intensity driver field that yields such an extraordinarily sensitive control. Conducting a series of two-dimensional (2D) relativistic particle-in-cell (PIC) simulations carried out for currently achievable laser parameters and realistic experimental conditions, we demonstrate that an appropriate combination of [Formula: see text] along with a precise delay control can lead to more than three times enhancement in the resulting high harmonic flux. Finally, the two-color multi-cycle field synthesized with appropriate delay and polarization can all-optically suppress several attosecond bursts while favourably allowing one burst to occur, leading to the generation of intense isolated attosecond pulses without the need of any sophisticated gating techniques.

3.
Rev Sci Instrum ; 93(3): 033504, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35364989

RESUMEN

Laser wakefield acceleration (LWFA) using PW-class laser pulses generally requires cm-scale laser-plasma interaction Rayleigh length, which can be realized by focusing such pulses inside a long underdense plasma with a large f-number focusing optic. Here, we present a new PW-based LWFA instrument at the SG-II 5 PW laser facility, which employs f/23 focusing. The setup also adapted an online probing of the plasma density via Nomarski interferometry using a probe laser beam having 30 fs pulse duration. By focusing 1-PW, 30-fs laser pulses down to a focal spot of 230 µm, the peak laser intensity reached a mild-relativistic level of 2.6 × 1018 W/cm2, a level modest for standard LWFA experiments. Despite the large aspect ratio of >25:1 (transverse to longitudinal dimensions) of the laser pulse, electron beams were observed in our experiment only when the laser pulse experienced relativistic self-focusing at high gas-pressure thresholds, corresponding to plasma densities higher than 3 × 1018 cm-3.

4.
Opt Express ; 28(16): 23251-23265, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32752324

RESUMEN

The dynamics and the decay processes of inner-shell excited atoms are of great interest in physics, chemistry, biology, and technology. The highly excited state decays very quickly through different channels, both radiative and non-radiative. It is therefore a long-standing goal to study such dynamics directly in the time domain. Using few-cycle infrared laser pulses, we investigated the excitation and ionization of inner-shell electrons through laser-induced electron re-collision with the original parent ions and measured the dependence of the emitted x-ray spectra on the intensity and ellipticity of the driving laser. These directly re-colliding electrons can be used as the initiating pump step in pump/probe experiments for studying core-hole dynamics at their natural temporal scale. In our experiment we found that the dependence of the x-ray emission spectrum on the laser intensity and polarization state varies distinctly for the two kinds of atomic systems. Relying on our data and numerical simulations, we explain this behavior by the presence of different excitation mechanisms that are contributing in different ratios to the respective overall x-ray emission yields. Direct re-collision excitation competes with indirect collisions with neighboring atoms by electrons having "drifted away" from the original parent ion.

5.
Opt Express ; 27(7): 9733-9739, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045122

RESUMEN

We report the application of the time gated ion microscopy technique in accessing online the position of the source of harmonics generated in atomic gas media. This is achieved by mapping the spatial extreme-ultraviolet (XUV)-intensity distribution of the harmonic source onto a spatial ion distribution, produced in a separate focal volume of the generated XUV beam through single photon ionization of atoms. It is found that the position of the harmonic source depends on the relative position of the harmonic generation gas medium and the focus of the driving infrared (IR) beam. In particular, by translating the gas medium with respect to the IR beam focus different "virtual" source positions are obtained online. Access to such online source positioning allows better control and provides increased possibilities in experiments where selection of electron trajectory is important. The present study gives also access to quantitative information which is connected to the divergence, the coherence properties and the photon flux of the harmonics. Finally, it constitutes a precise direct method for providing complementary experimental info to different attosecond metrology techniques.

6.
Phys Rev Lett ; 104(5): 055001, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20366770

RESUMEN

We present direct measurements of the absolute energy distribution of relativistic electrons generated in intense, femtosecond laser interaction with a solid. Cherenkov emission radiated by these electrons in a novel prism target is spectrally dispersed to obtain yield and energy distribution of electrons simultaneously. A crucial advance is the observation of high density electron current as predicted by particle simulations and its transport as it happens inside the target. In addition, the strong sheath potential present at the rear side of the target is inferred from a comparison of the electron spectra derived from Cherenkov light observation with that from a magnet spectrometer.

7.
Phys Rev Lett ; 101(14): 145001, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18851536

RESUMEN

We demonstrate near-100% light absorption and increased x-ray emission from dense plasmas created on solid surfaces with a periodic sub-lambda structure. The efficacy of the structure-induced surface plasmon resonance, responsible for enhanced absorption, is directly tested at the highest intensities to date (3 x 10{15} W cm{-2}) via systematic, correlated measurements of absorption and x-ray emission. An analytical grating model as well as 2D particle-in-cell simulations conclusively explain our observations. Our study offers a definite, quantitative way forward for optimizing and understanding the absorption process.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(4 Pt 2): 046118, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18517701

RESUMEN

We investigate the distribution of magnetic fields around dense solid plasmas generated by intense p-polarized laser approximately 10(16) W cm(-2), 100 fs) irradiation of magnetic tapes, using high sensitivity magneto-optical microscopy. By investigating the effect of irradiation on the magnetic tape, we present evidence for axial magnetic fields and map out the spatial distribution of these fields around the laser generated plasma. By using the axial magnetic field distribution as a diagnostic tool we uncover evidence for angular momentum associated with the plasma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA