Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1950, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431640

RESUMEN

In muscular dystrophies, muscle fibers loose integrity and die, causing significant suffering and premature death. Strikingly, the extraocular muscles (EOMs) are spared, functioning well despite the disease progression. Although EOMs have been shown to differ from body musculature, the mechanisms underlying this inherent resistance to muscle dystrophies remain unknown. Here, we demonstrate important differences in gene expression as a response to muscle dystrophies between the EOMs and trunk muscles in zebrafish via transcriptomic profiling. We show that the LIM-protein Fhl2 is increased in response to the knockout of desmin, plectin and obscurin, cytoskeletal proteins whose knockout causes different muscle dystrophies, and contributes to disease protection of the EOMs. Moreover, we show that ectopic expression of fhl2b can partially rescue the muscle phenotype in the zebrafish Duchenne muscular dystrophy model sapje, significantly improving their survival. Therefore, Fhl2 is a protective agent and a candidate target gene for therapy of muscular dystrophies.


Asunto(s)
Proteínas con Dominio LIM , Proteínas Musculares , Distrofia Muscular de Duchenne , Músculos Oculomotores , Animales , Proteínas del Citoesqueleto/metabolismo , Distrofina/genética , Expresión Génica Ectópica , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Músculos Oculomotores/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas Musculares/metabolismo , Proteínas con Dominio LIM/metabolismo
2.
Invest Ophthalmol Vis Sci ; 65(2): 19, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334702

RESUMEN

Purpose: The cytoskeleton of the extraocular muscles (EOMs) is significantly different from that of other muscles. We aimed to investigate the role of obscurin, a fundamental cytoskeletal protein, in the EOMs. Methods: The distribution of obscurin in human and zebrafish EOMs was compared using immunohistochemistry. The two obscurin genes in zebrafish, obscna and obscnb, were knocked out using CRISPR/Cas9, and the EOMs were investigated using immunohistochemistry, qPCR, and in situ hybridization. The optokinetic reflex (OKR) in five-day-old larvae and adult obscna-/-;obscnb-/- and sibling control zebrafish was analyzed. Swimming distance was recorded at the same age. Results: The obscurin distribution pattern was similar in human and zebrafish EOMs. The proportion of slow and fast myofibers was reduced in obscna-/-;obscnb-/- zebrafish EOMs but not in trunk muscle, whereas the number of myofibers containing cardiac myosin myh7 was significantly increased in EOMs of obscurin double mutants. Loss of obscurin resulted in less OKRs in zebrafish larvae but not in adult zebrafish. Conclusions: Obscurin expression is conserved in normal human and zebrafish EOMs. Loss of obscurin induces a myofiber type shift in the EOMs, with upregulation of cardiac myosin heavy chain, myh7, showing an adaptation strategy in EOMs. Our model will facilitate further studies in conditions related to obscurin.


Asunto(s)
Músculos Oculomotores , Proteínas Serina-Treonina Quinasas , Factores de Intercambio de Guanina Nucleótido Rho , Pez Cebra , Animales , Humanos , Inmunohistoquímica , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Músculos Oculomotores/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Pez Cebra/genética
3.
Nucleic Acids Res ; 51(12): 6264-6285, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37191066

RESUMEN

Photodynamic therapy (PDT) ideally relies on the administration, selective accumulation and photoactivation of a photosensitizer (PS) into diseased tissues. In this context, we report a new heavy-atom-free fluorescent G-quadruplex (G4) DNA-binding PS, named DBI. We reveal by fluorescence microscopy that DBI preferentially localizes in intraluminal vesicles (ILVs), precursors of exosomes, which are key components of cancer cell proliferation. Moreover, purified exosomal DNA was recognized by a G4-specific antibody, thus highlighting the presence of such G4-forming sequences in the vesicles. Despite the absence of fluorescence signal from DBI in nuclei, light-irradiated DBI-treated cells generated reactive oxygen species (ROS), triggering a 3-fold increase of nuclear G4 foci, slowing fork progression and elevated levels of both DNA base damage, 8-oxoguanine, and double-stranded DNA breaks. Consequently, DBI was found to exert significant phototoxic effects (at nanomolar scale) toward cancer cell lines and tumor organoids. Furthermore, in vivo testing reveals that photoactivation of DBI induces not only G4 formation and DNA damage but also apoptosis in zebrafish, specifically in the area where DBI had accumulated. Collectively, this approach shows significant promise for image-guided PDT.


Asunto(s)
G-Cuádruplex , Neoplasias , Fotoquimioterapia , Animales , ADN/metabolismo , Daño del ADN , Replicación del ADN , Inestabilidad Genómica , Neoplasias/genética , Neoplasias/terapia , Estrés Oxidativo , Fármacos Fotosensibilizantes/farmacología , Pez Cebra/genética , Pez Cebra/metabolismo , Fotoquimioterapia/métodos
4.
Dev Dyn ; 251(9): 1423-1438, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34435397

RESUMEN

BACKGROUND: Migrating muscle progenitors delaminate from the somite and subsequently form muscle tissue in distant anatomical regions such as the paired appendages, or limbs. In amniotes, this process requires a signaling cascade including the transcription factor paired box 3 (Pax3). RESULTS: In this study, we found that, unlike in mammals, pax3a/3b double mutant zebrafish develop near to normal appendicular muscle. By analyzing numerous mutant combinations of pax3a, pax3b and pax7a, and pax7b, we determined that there is a feedback system and a compensatory mechanism between Pax3 and Pax7 in this developmental process, even though Pax7 alone is not required for appendicular myogenesis. pax3a/3b/7a/7b quadruple mutant developed muscle-less pectoral fins. CONCLUSIONS: We found that Pax3 and Pax7 are redundantly required during appendicular myogenesis in zebrafish, where Pax7 is able to activate the same developmental programs as Pax3 in the premigratory progenitor cells.


Asunto(s)
Factores de Transcripción Paired Box , Pez Cebra , Animales , Mamíferos , Desarrollo de Músculos/genética , Músculo Esquelético , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Factores de Transcripción Paired Box/genética , Pez Cebra/genética
5.
PLoS One ; 8(2): e57287, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468957

RESUMEN

Uterus development during pre-implantation stage affects implantation process and embryo growth. Aberrant uterus development is associated with many human reproductive diseases. Among the factors regulating uterus development, vascular remodeling promoters are critical for uterus function and fertility. Vascular endothelial growth factor (VEGF), as one of the major members, has been found to be important in endothelial cell growth and blood vessel development, as well as in non-endothelial cells. VEGF mediation in reproduction has been broadly studied, but VEGF-induced transcriptional machinery during implantation window has not been systematically studied. In this study, a genetically repressed VEGF mouse model was used to analyze uterus transcriptome at gestation 2.5 (G2.5) by Solexa/Illumina's digital gene expression (DGE) system. A number of 831 uterus-specific and 2398 VEGF-regulated genes were identified. Gene ontology (GO) analysis indicated that genes actively involved in uterus development were members of collagen biosynthesis, cell proliferation and cell apoptosis. Uterus-specific genes were enriched in activities of phosphatidyl inositol phosphate kinase, histone H3-K36 demethylation and protein acetylation. Among VEGF-regulated genes, up-regulated were associated with RNA polymerase III activity while down-regulated were strongly related with muscle development. Comparable numbers of antisense transcripts were identified. Expression levels of the antisense transcripts were found tightly correlated with their sense expression levels, an indication of possibly non-specific transcripts generated around the active promoters and enhancers. The antisense transcripts with exceptionally high or low expression levels and the antisense transcripts under VEGF regulation were also identified. These transcripts may be important candidates in regulation of uterus development. This study provides a global survey on genes and antisense transcripts regulated by VEGF in the pre-implantation stage. Results will contribute to further study the candidate genes and pathways in regulating implantation process and related diseases.


Asunto(s)
Blastocisto , Perfilación de la Expresión Génica , Transcripción Genética , Útero/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Femenino , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...