Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(11): 674, 2024 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412650

RESUMEN

Water dispersible L-glutamic acid (Glu) functionalized cesium lead bromide perovskite quantum dots (CsPbBr3 PQDs), namely CsPbBr3@Glu PQDs were synthesized and used for the fluorescence "turn-off" detection of myoglobin (Myo). The as-prepared CsPbBr3@Glu PQDs exhibited an exceptional photoluminescence quantum yield of 25% and displayed emission peak at 520 nm when excited at 380 nm. Interestingly, the fluorescence "turn-off" analytical approach was designed to detect Myo using CsPbBr3@Glu PQDs as a simple optical probe. The developed probe exhibited a wide linear range (0.1-25 µM) and a detection limit of 42.42 nM for Myo sensing. The CsPbBr3@Glu PQDs-based optical probe provides high ability to determine Myo in serum and plasma samples.


Asunto(s)
Compuestos de Calcio , Cesio , Ácido Glutámico , Plomo , Límite de Detección , Mioglobina , Óxidos , Puntos Cuánticos , Puntos Cuánticos/química , Plomo/química , Plomo/sangre , Plomo/análisis , Mioglobina/sangre , Mioglobina/análisis , Mioglobina/química , Ácido Glutámico/sangre , Ácido Glutámico/química , Ácido Glutámico/análisis , Compuestos de Calcio/química , Cesio/química , Óxidos/química , Humanos , Titanio/química , Biomarcadores/sangre , Biomarcadores/análisis , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Agua/química
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125232, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39374559

RESUMEN

L-thyroxine serves as a primary biomarker for diagnosing hypothyroidism and it is also utilized in hormone replacement therapy. Regular assessment of thyroxine levels is crucial for preventing health issues in hypothyroid patients, suggesting the requirement of a facile analytical tool for the detection of L-thyroxine. In this work, a straightforward and efficient synthetic method is introduced for in-situ preparation of Mn2+-doped boron quantum dots (Mn2+@B-QDs) derived from boron powder through a solvothermal reaction. The introduction of Mn2+ ion into B-QDs not only enhances fluorescence efficiency but also provides favorable sites within the QDs, expanding their potential applications in analytical chemistry. The blue fluorescent Mn2+ @B-QDs exhibited excellent performance for the selective recognition of L-thyroxine via a dynamic quenching mechanism. Under ideal conditions, a good linear relation was observed between the fluorescence emission intensity ratio of Mn2+@B-QDs and the concentration of L-thyroxine in the range of 0.125-5 µM, with a lower detection limit of 59.86 nM. The Mn2+@B-QDs exhibited the negligible cytotoxicity against A549 lung cancer cell lines and demonstrated good biocompatibility toward Saccharomyces cerevisiae cells.

3.
Mikrochim Acta ; 191(10): 621, 2024 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320543

RESUMEN

A hydrothermal synthetic method is established to produce blue fluorescent Eu3+-doped niobium carbide MXene quantum dots (Eu3+-Nb2C MQDs). The synthesized Eu3+-Nb2C MQDs demonstrated a quantum yield of 20.61% and a maximum emission intensity at 405 nm. The as-prepared Eu3+-Nb2C MQDs acted as a sensor for the rapid and sensitive detection of hypoxanthine through fluorescence quenching, and of fluoxetine through fluorescence enhancement mechanisms. The emission peak of Eu3+-Nb2C MQDs at 405 nm exhibited a linear response for hypoxanthine and fluoxetine in the ranges of 0.5-25 µM and 0.125-2.5 µM, with detection limits of 15.0 and 3.7 nM, respectively. The newly developed probe was effectively used for the selective detection of hypoxanthine and fluoxetine in biofluids and pharmaceutical samples. Remarkably, the Eu3+-Nb2C MQDs exhibited minimal cytotoxicity towards A549 lung cancer cells and showed great potential as imaging agent for imaging of Saccharomyces cerevisiae cells.


Asunto(s)
Europio , Colorantes Fluorescentes , Fluoxetina , Niobio , Puntos Cuánticos , Espectrometría de Fluorescencia , Puntos Cuánticos/química , Humanos , Europio/química , Niobio/química , Espectrometría de Fluorescencia/métodos , Células A549 , Fluoxetina/análisis , Fluoxetina/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Límite de Detección , Saccharomyces cerevisiae
4.
Luminescence ; 39(9): e4895, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39239921

RESUMEN

Easy, economical, and swift detecting tools are very demanded for assaying various chemical species. The introduction of label-free paper-based read-out devices has significantly reached the demand of analytical science for target analytes assays. Herein, a facile, and disposable inexpensive paper-based sensing tool was fabricated for sensing As3+ ion using graphene quantum dots (GQDs) as a fluorescent reader. The CA-GQDs were synthesized using citric acid (CA) as a precursor via the pyrolysis method, further physisorbed on the cellulose substrate for sensing of As3+ via aggregation-based fluorescence "turn-off" mechanism. The linear range for quantitating As3+ ion is in the range of 0.05-50 µM with a detection limit of 10 nM. The practical application of the CA-GQDs-based analytical platform was verified by assaying As3+ ion in water samples. The CA-GQDs-embedded paper strip can be easily extended for assaying of As3+ ion, which meets the demand for monitoring of As3+ ion in real samples.


Asunto(s)
Celulosa , Grafito , Papel , Puntos Cuánticos , Grafito/química , Puntos Cuánticos/química , Celulosa/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Espectrometría de Fluorescencia , Iones/análisis , Iones/química , Límite de Detección , Fluorescencia
5.
J Fluoresc ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227544

RESUMEN

In this study, carbon dots (CDs) were synthesized from Peltophorum pterocarpum flowers as the precursor material using the hydrothermal method. The fluorescence emission spectra of the resulting Peltophorum pterocarpum CDs (PP-CDs) exhibited excitation-independent behavior, showing the fluorescence emission peak at 410 nm when excited at 330 nm. This method is simple, rapid and well consistent with the green chemistry and sustainable analytical method development. The as-synthesized PP-CDs acted as a promising fluorescent probe for detecting carbendazim (CBZ) via aggregation-induced emission mechanism, showing a linear response to CBZ concentrations ranging from 1 to 30 µM, with a detection limit of 5.41 nM. This method was successfully applied to quantify CBZ in food samples, achieving excellent recoveries of 99% with a relative standard deviation (RSD) of less than 2%.

6.
Luminescence ; 39(8): e4866, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39152772

RESUMEN

Copper nanoclusters (Cu NCs) have shown significant attention in sensing of molecular and ionic species. In this work, a single-step biosynthetic approach was introduced for the preparation of fluorescent Cu NCs using Holarrhena pubescens (H. pubescens) leaves extract as a template. The synthesized H. pubescens-Cu NCs act as a nanomolecular probe for the detection of bilirubin in biofluids. The synthesized H. pubescens-Cu NCs displayed highest fluorescence intensity at 454 nm, when excited at 330 nm. Importantly, selective detection of bilirubin was obtained by introducing H. pubescens-Cu NCs as a simple molecular probe. The interaction of bilirubin and H. pubescens-Cu NCs resulted in a remarkable decrease in the emission peak intensity. The developed H. pubescens-Cu NCs-based bilirubin molecular probe has a wide linear range of 0.5-20.00 µM with the limit of detection of 30.54 nM for bilirubin. The promising application of H. pubescens-Cu NCs-based molecular probe was assessed by assaying bilirubin in spiked biofluids.


Asunto(s)
Bilirrubina , Cobre , Colorantes Fluorescentes , Nanopartículas del Metal , Espectrometría de Fluorescencia , Cobre/química , Bilirrubina/sangre , Bilirrubina/química , Bilirrubina/análisis , Humanos , Nanopartículas del Metal/química , Colorantes Fluorescentes/química , Fluorescencia , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Límite de Detección , Extractos Vegetales/química
7.
Int J Biol Macromol ; 277(Pt 1): 134112, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39048011

RESUMEN

Designing stimuli-responsive drug delivery vehicles with higher drug loading capacity, sustained and targeted release of anti-cancer drugs and able to mitigate the shortcomings of traditional systems is need of hour. Herein, we designed stimuli-responsive, self-healable, and adhesive hydrogel through synergetic interaction between [Cho][Gly] (Choline-Glycine) and sodium alginate (SA). The hydrogel was formed as a result of non-covalent interaction between the components of the mixture forming the fibre kind morphology; confirmed through FTIR/computational analysis and SEM/AFM images. The hydrogel exhibited excellent mechanical strength, self-healing ability, adhesive character and most importantly; adjustable injectability. In vitro biocompatibility of the hydrogel was tested on HaCaT and MCF-7 cells, showing >92 % cell viability after 48 h. The hemolysis ratio (<4 %) of the hydrogel confirmed the blood compatibility of the hydrogel. When tested for drug-loading capacity, the hydrogel show 1500 times drug loading for the 5-fluorouracil (5-FU) against the SA based hydrogel. In vitro release data indicated that 5-FU have more preference towards the cancerous cell condition, i.e. acidic pH (>85 %), whereas the drug-loaded hydrogel successfully killed the MCF-7 and HeLa cell with a

Asunto(s)
Alginatos , Neoplasias de la Mama , Liberación de Fármacos , Hidrogeles , Alginatos/química , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Hidrogeles/química , Células MCF-7 , Femenino , Portadores de Fármacos/química , Fluorouracilo/farmacología , Fluorouracilo/química , Supervivencia Celular/efectos de los fármacos , Hemólisis/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Antineoplásicos/farmacología , Antineoplásicos/química
9.
J Mater Chem B ; 12(22): 5479-5495, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38742683

RESUMEN

The non-invasive nature and potential for sustained release make transdermal drug administration an appealing treatment option for cancer therapy. However, the strong barrier of the stratum corneum (SC) poses a challenge for the penetration of hydrophilic chemotherapy drugs such as 5-fluorouracil (5-FU). Due to its biocompatibility and capacity to increase drug solubility and permeability, especially when paired with chemical enhancers, such as oleic acid (OA), which is used in this work, choline glycinate ([Cho][Gly]) has emerged as a potential substance for transdermal drug delivery. In this work, we examined the possibility of transdermal delivery of 5-FU for the treatment of breast cancer using an ionic hydrogel formulation consisting of [Cho][Gly] with OA. Small angle neutron scattering, rheological analysis, field emission scanning electron microscopy, and dynamic light scattering analysis were used to characterize the ionic hydrogel. The non-covalent interactions present between [Cho][Gly] and OA were investigated by computational simulations and FTIR spectroscopy methods. When subjected to in vitro drug permeation using goat skin in a Franz diffusion cell, the hydrogel demonstrated sustained release of 5-FU and effective permeability in the order: [Cho][Gly]-OA gel > [Cho][Gly] > PBS (control). The hydrogel also demonstrated 92% cell viability after 48 hours for the human keratinocyte cell line (HaCaT cells) as well as the normal human cell line L-132. The breast cancer cell line MCF-7 and the cervical cancer cell line HeLa were used to study in vitro cytotoxicity that was considerably affected by the 5-FU-loaded hydrogel. These results indicate the potential of the hydrogel as a transdermal drug delivery vehicle for the treatment of breast cancer.


Asunto(s)
Administración Cutánea , Fluorouracilo , Hidrogeles , Hidrogeles/química , Humanos , Fluorouracilo/química , Fluorouracilo/farmacología , Fluorouracilo/administración & dosificación , Animales , Sistemas de Liberación de Medicamentos , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Cabras , Liberación de Fármacos , Absorción Cutánea/efectos de los fármacos , Ácido Oléico/química , Piel/metabolismo , Colina/química , Glicina/química , Glicina/administración & dosificación , Adhesivos/química , Portadores de Fármacos/química
10.
J Fluoresc ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676770

RESUMEN

Blue emissive Argyreia nervosa-capped gold nanoclusters (A. nervosa-AuNCs) were synthesized via a simple environment-friendly method. The developed probe exhibits rapid response towards the target analyte (hexaconazole fungicide). Several characterizations, including FT-IR, UV-visible, fluorescence, HR-TEM, XPS, and fluorescence lifetime, were studied to confirm the formation of A. nervosa-AuNCs. The A. nervosa-AuNCs displayed emission and excitation peaks at 470 and 390 nm, respectively. Furthermore, the quantum yield (QY) of A. nervosa-AuNCs was 21.25%. The as-synthesized A. nervosa-AuNCs showed a good linear response with hexaconazole in the concentration range of 0.025-180 µM, with a detection limit (LOD) of 21.94 nM, indicating A. nervosa-AuNCs could be used as a sensitive and selective probe for detecting hexaconazole through a fluorescence "turn-off" mechanism. The A. nervosa-AuNCs were successfully used to detect hexaconazole in real samples. Moreover, A. nervosa-AuNCs were used as a bio-imaging probe for visualization of Saccharomyces cerevisiae cells.

11.
ACS Appl Bio Mater ; 7(5): 3110-3123, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38620030

RESUMEN

Transdermal drug delivery systems (TDDS) are a promising and innovative approach for breast cancer treatment, offering advantages such as noninvasiveness, potential for localized and prolonged drug delivery while minimizing systemic side effects through avoiding first-pass metabolism. Utilizing the distinctive characteristics of hydrogels, such as their biocompatibility, versatility, and higher drug loading capabilities, in the present work, we prepared ionic hydrogels through synergistic interaction between ionic liquids (ILs), choline alanine ([Cho][Ala]), and choline proline ([Cho][Pro]) with oleic acid (OA). ILs used in the study are biocompatible and enhance the solubility of 5-fluorouracil (5-FU), whereas OA is a known chemical penetration enhancer. The concentration-dependent (OA) change in morphological aggregates, that is, from cylindrical micelles to worm-like micelles to hydrogels was formed with both ILs and was characterized by SANS measurement, whereas the interactions involved were confirmed by FTIR spectroscopy. The hydrogels have excellent mechanical properties, which studied by rheology and their morphology through FE-SEM analysis. The in vitro skin permeation study revealed that both hydrogels penetrated 255 times ([Cho][Ala]) and 250 times ([Cho][Pro]) more as compared to PBS after 48 h. Those ionic hydrogels exhibited the capability to change the lipid and keratin arrangements within the skin layer, thereby enhancing the transdermal permeation of the 5-FU. Both ionic hydrogels exhibit excellent biocompatibility with normal cell lines (L-132 cells) as well as cancerous cell lines (MCF-7 cells), demonstrating over 92% cell viability after 48 h in both cell lines. In vitro, the cytotoxicity of the 5-FU-loaded hydrogels was evaluated on MCF-7 and HeLa cell lines. These results indicate that the investigated biocompatible and nontoxic ionic hydrogels enable the transdermal delivery of hydrophilic drugs, making them a viable option for effectively treating breast cancer.


Asunto(s)
Administración Cutánea , Materiales Biocompatibles , Neoplasias de la Mama , Supervivencia Celular , Fluorouracilo , Hidrogeles , Ensayo de Materiales , Fluorouracilo/química , Fluorouracilo/farmacología , Fluorouracilo/administración & dosificación , Hidrogeles/química , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Animales , Tamaño de la Partícula , Sistemas de Liberación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Células MCF-7 , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacología
12.
Luminescence ; 39(3): e4709, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38491906

RESUMEN

Fluorescent metal nanoclusters (MNCs) have found extensive application in recognizing molecular species. Here, orange-red fluorescent Arg-A. paniculata-MoNCs were synthesized using Andrographis paniculata leaf extract, arginine as a ligand, and MoCl5 as a metal precursor. The Arg-A. paniculata-MoNCs complex exhibited a quantum yield (QY) of 16.91% and excitation/emission wavelengths of 400/665 nm. The synthesized Arg-A. paniculata-MoNCs successfully acted as a probe for assaying neomycin sulphate (NS) via fluorescence turn-off and K+ ions via fluorescence turn-on mechanisms, respectively. Moreover, the developed probe was effectively used to develop a cellulose paper strip-based sensor for detection of NS and K+ ions. Arg-A. paniculata-MoNCs demonstrated great potential for sensing NS and K+ ions, with concentration ranges of 0.1-80 and 0.25-110 µM for NS and K+ ions, respectively. The as-synthesized Arg-A. paniculata-MoNCs efficiently detected NS and K+ ions in food and biofluid samples, respectively.


Asunto(s)
Colorantes Fluorescentes , Molibdeno , Fluorescencia , Iones , Espectrometría de Fluorescencia
13.
Mikrochim Acta ; 191(3): 161, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411697

RESUMEN

The exceptional ascending heights of graphene (carbon) and boron nitride nanostructures have invited scientists to explore metal nitride nanomaterials. Herein, Zn3N2 quantum dots (QDs) were prepared via a simple hydrothermal route from the reaction between zinc nitrate hexahydrate and ammonia solution that possess efficient strength towards sensing applications of metal ions (Cu2+ and Mn2+). The as-prepared Zn3N2 QDs show bright fluorescence, displaying an emission peak at 408 nm upon excitation at 320 nm, with a quantum yield (QY) of 29.56%. It was noticed that the fluorescence intensity of Zn3N2 QDs linearly decreases with the independent addition of Cu2+ and Mn2+ ions, displaying good linearity in the ranges 2.5-50 µM and 0.05-5 µM with detection limits of 21.77 nM and of 63.82 nM for Cu2+ and Mn2+ ions, respectively. The probe was successfully tested for quantifying Cu2+ and Mn2+ in real samples including river, canal, and tap water, providing good recoveries with a relative standard deviation < 2%. Furthermore, the masking proposition can successfully eliminate the interference if the two metal ions exist together. It was found that thiourea is efficiently able to mask Cu2+ and selectively quenches Mn2+, and L-cysteine is able to halt the quenching potential of Mn2+ and is selectively able to sense Cu2+. The Zn3N2 QDs provide a simple way for the simultaneous detection of both Cu2+ and Mn2+ ions in environmental samples at low sample preparations requirements.

14.
J Fluoresc ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38190011

RESUMEN

In this work, Cassia tora (C. tora) have been used as a template to synthesize green fluorescent C. tora molybdenum nanoclusters (C. tora-MoNCs) through a green chemistry approach. These C. tora-MoNCs showed a quantum yield (QY) of 7.72% and exhibited a significant emission peak at 498 nm when excited at 380 nm. The as-prepared C. tora-MoNCs had an average size of 3.48 ± 0.80 nm and showed different surface functionality. The as-synthesized C. tora-MoNCs were successfully identified the hydroxyl radical (•OH) via a fluorescence quenching mechanism. Also, fluorescence lifetime and Stern-Volmer proved that after the addition of •OH radicals it was quenched the fluorescence intensity via a static quenching mechanism. The limit of detection is 9.13 nM, and this approach was successfully utilized for sensing •OH radicals in water samples with a good recovery rate.

15.
Biosens Bioelectron ; 246: 115902, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38056339

RESUMEN

Extracellular protein kinase A autoantibody (ECPKA-AutoAb) has been suggested as a universal cancer biomarker due to its higher amounts in serum of several types of cancer patients than that of normal individuals. Herein, we first developed a lateral flow immunoassay (LFIA) tool, using a sandwich format, toward ECPKA-AutoAb in human serum. For this format, 3G2 as a capture antibody was identified using hybridoma technique and a series of screenings where it showed superior capacity to recognize Enzo PKA catalytic subunit alpha (Cα), compared to other PKA antibodies and antigens. Using these components, we performed sandwich ELISA toward a mimic and real sample of ECPKA-AutoAb. As per the results, limit of detection (LOD) was found to be 135 ng/mL and ECPKA-AutoAb levels were higher in various cancer patients than in normal individuals like previous studies. Based on these results, we applied this sandwich format into LFIA tool and found that the LOD of the fabricated LFIA tool showed about 3.8 ng/mL using spiked PKA-Ab, which is significantly improved compared to the LOD of sandwich ELISA. Also, the developed LFIA tool demonstrated a remarkable ability to detect significant differences in ECPKA-AutoAb levels between normal and cancer patients within 15 min, showing a potential for point-of-care (PoC) detection. One interesting point is that our LFIA strip contains an additional conjugation pad II, named because of its position behind the conjugation pad, in which PKA Cα is dried, enabling a sandwich format.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Neoplasias , Humanos , Autoanticuerpos , Proteínas Quinasas , Neoplasias/diagnóstico , Inmunoensayo/métodos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Límite de Detección , Pruebas Serológicas
16.
J Fluoresc ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38109030

RESUMEN

This study describes a new method for synthesizing water-soluble carbon dots (CDs) using "Curcuma longa" (green source) named CL-CDs via a single-step hydrothermal process. The as-synthesized CL-CDs exhibited greenish-yellow fluorescence at 548 nm upon excitation at 440 nm. It shows good water stability and exhibits a quantum yield of 19.4%. The developed probe is utilized for sensing triazophos (TZP) pesticide via a dynamic quenching mechanism, exhibiting favorable linearity ranging from 0.5-500 µM with a limit of detection of 0.0042 µM. The as-prepared CL-CDs probe was sensitive and selective towards TZP. Lastly, the successful application of the CL-CDs-based fluorescent probe in water and rice samples highlights its potential as a reliable and efficient method for the detection of TZP in various real sample matrices. Eventually, bioimaging and biocompatibility aspects of CL-CDs have been assessed on Saccharomyces cerevisiae (yeast) cell and lung cancer (A549) cell lines, respectively.

17.
J Fluoresc ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38109031

RESUMEN

Fluorescent copper nanoclusters (Cu NCs) were synthesized by using Withania somnifera (W. somnifera) plant extract as a biotemplate. Aqueous dispersion of W. somnifera-Cu NCs displays intense emission peak at 458 nm upon excitation at 350 nm. This fluorescence emission was utilized for the detection of two pyrethroid pesticides (cypermethrin and lambda-cyhalothrin) via "turn-off" mechanism. Upon the addition of two pyrethiod pesticides independently, the fluorescence emission of W. somnifera-Cu NCs was gradually decreased with increasing concentrations of both pesticides. It was noticed that the decrease in emission intensity at 458 nm was linearly dependent on the logarithm of both pesticides concentrations in the ranges of 0.01-100 µM and of 0.05-100 µM for cypermethrin and lambda-cyhalothrin, respectively. Consequently, the limits of detection were found to be 27.06 and 23.28 nM for cypermethrin and lambda-cyhalothrin, respectively. The as-fabricated W. somnifera-Cu NCs acted as a facile sensor for the analyses of cypermethrin and lambda-cyhalothrin in vegetables (tomato and bottle gourd), which demonstrates that it could be used as portable sensing platform for assaying of two pyrethroid pesticides in food samples.

18.
J Fluoresc ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843695

RESUMEN

In this paper, a new synthetic route is introduced for the synthesis of high-luminescent greenish-yellow fluorescent copper nanoclusters (PVP@A. senna-Cu NCs) using Avaram senna (A. senna) and polyvinylpyrrolidone (PVP) as templates. A. senna plant extract mainly contains variety of phytochemicals including glycosides, sugars, saponins, phenols, and terpenoids that show good pharmacological activities such as anti-inflammatory, antioxidant, and antidiabetic. PVP is a stable and biocompatible polymer that is used as a stabilizing agent for the synthesis of PVP@A. senna-Cu NCs. The size, surface functionality, and element composition of the fabricated Cu NCs were confirmed by various analytical techniques. The as-prepared greenish-yellow fluorescent Cu NCs exhibit significant selectivity towards fipronil, thereby favoring to assay fipronil pesticide with good linearity in the range of 3.0-30 µM with a detection limit of 65.19 nM. More importantly, PVP@A. senna-Cu NCs are successfully applied to assay fipronil in vegetable and grain samples.

19.
Luminescence ; 38(11): 1872-1882, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37555766

RESUMEN

In this work, a facile one-step green synthesis was developed for the fabrication of blue fluorescent copper nanocluster (Brahmi-CuNCs) from the extract of Bacopa monnieri (common name is Brahmi) via a microwave method. The as-prepared Brahmi-CuNCs emitted blue fluorescence at 452 nm when excited at 352 nm and showed a quantum yield of 31.32%. Brahmi-derived blue fluorescent CuNCs acted as a probe for fluorescence sensing of dichlorvos. Upon the addition of dichlorvos, the blue emission for Brahmi-CuNCs was gradually turned off, favouring establishment of a calibration graph in the range 0.5-100 µM with a detection limit of 0.23 µM. The as-synthesized Brahmi-CuNCs exhibited marked sensitivity and selectivity towards dichlorvos, favourable for assaying dichlorvos in various samples (cabbage, apple juice, and rice).


Asunto(s)
Bacopa , Nanopartículas del Metal , Fluorescencia , Cobre , Diclorvos , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes , Límite de Detección
20.
Food Chem ; 428: 136796, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37441937

RESUMEN

In this study, water-soluble carbon dots (CDs) were employed as a novel fluorescence "turn OFF-ON" sensor to detect Fe3+ ions in pharmaceutical sample and propiconazole (PC) in food samples. Blue fluorescent "LPCDs" are synthesized from the lemon peel that exhibited emission at 468 nm when excited at 378 nm. The average size of the as-prepared LPCDs is 2.03 nm, displaying a quantum yield of 32 %. Fluorescence "turn OFF-ON" strategy was developed for sensing of Fe3+ ion and PC, demonstrating favorable linearity in the range of 0.5-180 µM and 0.1-40 µM with the detection limits of 0.18 µM and 0.054 µM for Fe3+ and PC, respectively. Further, LPCDs-loaded cellulose paper was used as visual reader to detect Fe3+ and PC. This approach was effectively applied to detect Fe3+ and PC in pharmaceutical and vegetable samples.


Asunto(s)
Plaguicidas , Puntos Cuánticos , Fluorescencia , Carbono , Preparaciones Farmacéuticas , Colorantes Fluorescentes , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...