Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(11): eadk8669, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489365

RESUMEN

Two-dimensional van der Waals (vdW) magnetic materials hold promise for the development of high-density, energy-efficient spintronic devices for memory and computation. Recent breakthroughs in material discoveries and spin-orbit torque control of vdW ferromagnets have opened a path for integration of vdW magnets in commercial spintronic devices. However, a solution for field-free electric control of perpendicular magnetic anisotropy (PMA) vdW magnets at room temperatures, essential for building compact and thermally stable spintronic devices, is still missing. Here, we report a solution for the field-free, deterministic, and nonvolatile switching of a PMA vdW ferromagnet, Fe3GaTe2, above room temperature (up to 320 K). We use the unconventional out-of-plane anti-damping torque from an adjacent WTe2 layer to enable such switching with a low current density of 2.23 × 106 A cm-2. This study exemplifies the efficacy of low-symmetry vdW materials for spin-orbit torque control of vdW ferromagnets and provides an all-vdW solution for the next generation of scalable and energy-efficient spintronic devices.

2.
Nat Commun ; 15(1): 1485, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374025

RESUMEN

Recent discovery of emergent magnetism in van der Waals magnetic materials (vdWMM) has broadened the material space for developing spintronic devices for energy-efficient computation. While there has been appreciable progress in vdWMM discovery, a solution for non-volatile, deterministic switching of vdWMMs at room temperature has been missing, limiting the prospects of their adoption into commercial spintronic devices. Here, we report the first demonstration of current-controlled non-volatile, deterministic magnetization switching in a vdW magnetic material at room temperature. We have achieved spin-orbit torque (SOT) switching of the PMA vdW ferromagnet Fe3GaTe2 using a Pt spin-Hall layer up to 320 K, with a threshold switching current density as low as [Formula: see text]1.69 [Formula: see text] 106 A cm-2 at room temperature. We have also quantitatively estimated the anti-damping-like SOT efficiency of our Fe3GaTe2/Pt bilayer system to be [Formula: see text], using the second harmonic Hall voltage measurement technique. These results mark a crucial step in making vdW magnetic materials a viable choice for the development of scalable, energy-efficient spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA