Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 15018, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31636363

RESUMEN

In nutrient-rich conditions, basic amino acids are actively accumulated into the vacuoles by H+-coupled transporters in Saccharomyces cerevisiae. In addition to the H+-coupled systems, the existence of an exchanger for arginine and histidine was indicated by kinetic analysis using isolated vacuolar membrane vesicles; however, the gene(s) involved in the activity has not been identified. Here, we show that the uptake activity of arginine driven by an artificially imposed histidine gradient decreased significantly by the disruption of the gene encoding vacuolar PQ-loop protein Ypq2, but not by those of Ypq1 and Ypq3. The exchange activity was restored by the expression of YPQ2. Furthermore, the substitution of a conserved proline residue, Pro29, in Ypq2 greatly decreased the exchange activity. These results suggest that Ypq2 is responsible for the exchange activity of arginine and histidine across the vacuolar membrane, and the conserved proline residue in the PQ-loop motif is required for the activity.


Asunto(s)
Arginina/metabolismo , Histidina/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Mutación/genética , Prolina/metabolismo , Protones , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
2.
Biol Pharm Bull ; 41(10): 1496-1501, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30270317

RESUMEN

In yeast cells growing under nutrient-rich condition approximately 50% of total amino acids are accumulated in the vacuoles; however, the composition of amino acids in the cytosol and in the vacuoles is quite different. The vacuoles, like lysosomes, degrade proteins transported into their lumen and produce amino acids. These amino acids should be quickly excreted to the cytosol under nutrient starvation condition and recycled for de novo protein synthesis. These suggest that specific machineries that transport amino acids into and out of the vacuoles operate at the vacuolar membrane. Several families of transporter involved in the vacuolar compartmentalization of amino acids have been identified and characterized using budding yeast Saccharomyces cerevisiae. In this review, we describe the vacuolar amino acid transporters identified so far and introduce recent findings on their activity and physiological function.


Asunto(s)
Aminoácidos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Vacuolas/metabolismo , Transporte Biológico , Medios de Cultivo , Citosol/metabolismo , Lisosomas/metabolismo , Nutrientes , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
3.
FEBS Lett ; 591(1): 5-15, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27925655

RESUMEN

Amino acids stored in the vacuoles are exported to the cytosol mainly for protein synthesis; however, the molecular identity of vacuolar amino acid exporters remains obscure in plants. Here, we demonstrate that the heterologous expression of AtAVT3 genes, Arabidopsis homologs of AVT3 and AVT4 encoding vacuolar amino acid exporters in yeast, reduces vacuolar amino acid levels in the avt3∆avt4∆ yeast cells. In vitro experiments revealed that 14 C-labeled Ala and Pro are exported from vacuolar membrane vesicles by AtAvt3A in an ATP-dependent manner. In Arabidopsis, AtAvt3A fused with green fluorescent protein localizes to the vacuolar membrane. We propose that AtAVT3 family represents the long sought-for vacuolar amino acid exporters in plants.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Membranas Intracelulares/metabolismo , Filogenia , Células Vegetales/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo
4.
Biophys Physicobiol ; 13: 37-44, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27924256

RESUMEN

Among the many types of bioenergy-transducing machineries, F- and V-ATPases are unique bio- and nano-molecular rotary motors. The rotational catalysis of F1-ATPase has been investigated in detail, and molecular mechanisms have been proposed based on the crystal structures of the complex and on extensive single-molecule rotational observations. Recently, we obtained crystal structures of bacterial V1-ATPase (A3B3 and A3B3DF complexes) in the presence and absence of nucleotides. Based on these new structures, we present a novel model for the rotational catalysis mechanism of V1-ATPase, which is different from that of F1-ATPases.

5.
Nat Commun ; 7: 13235, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27807367

RESUMEN

V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 µM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares/metabolismo , Adenosina Difosfato , Adenilil Imidodifosfato , Cristalografía por Rayos X , Escherichia coli , Conformación Proteica , ATPasas de Translocación de Protón Vacuolares/química
6.
Biosci Biotechnol Biochem ; 80(12): 2291-2297, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27555098

RESUMEN

Avt3p, a vacuolar amino acid exporter (656 amino acid residues) that is important for vacuolar amino acid compartmentalization as well as spore formation in Schizosaccharomyces pombe, has an extremely long hydrophilic region (approximately 290 amino acid residues) at its N-terminus. Because known functional domains have not been found in this region, its functional role was examined with a deletion mutant avt3(∆1-270) expressed in S. pombe avt3∆ cells. The deletion of this region did not affect its intracellular localization or vacuolar contents of basic amino acids as well as neutral ones. The defect of avt3Δ cells in spore formation was rescued by the expression of avt3+ but was not completely rescued by the expression of avt3(∆1-270). The N-terminal region is thus dispensable for the function of Avt3p as an amino acid exporter, but it is likely to be involved in the role of Avt3p under nutritional starvation conditions.


Asunto(s)
Aminoácidos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Vacuolas/metabolismo , Transporte de Proteínas , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Eliminación de Secuencia , Esporas Fúngicas/metabolismo
7.
Biosci Biotechnol Biochem ; 80(6): 1125-30, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26928127

RESUMEN

The vacuolar membrane proteins Ypq1p, Ypq2p, and Ypq3p of Saccharomyces cerevisiae are known as the members of the PQ-loop protein family. We found that the ATP-dependent uptake activities of arginine and histidine by the vacuolar membrane vesicles were decreased by ypq2Δ and ypq3Δ mutations, respectively. YPQ1 and AVT1, which are involved in the vacuolar uptake of lysine/arginine and histidine, respectively, were deleted in addition to ypq2Δ and ypq3Δ. The vacuolar membrane vesicles isolated from the resulting quadruple deletion mutant ypq1Δypq2Δypq3Δavt1Δ completely lost the uptake activity of basic amino acids, and that of histidine, but not lysine and arginine, was evidently enhanced by overexpressing YPQ3 in the mutant. These results suggest that Ypq3p is specifically involved in the vacuolar uptake of histidine in S. cerevisiae. The cellular level of Ypq3p-HA(3) was enhanced by depletion of histidine from culture medium, suggesting that it is regulated by the substrate.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Antiportadores/genética , Vesículas Citoplasmáticas/metabolismo , Regulación Fúngica de la Expresión Génica , Histidina/metabolismo , Proteínas de la Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfato/metabolismo , Sistemas de Transporte de Aminoácidos/deficiencia , Antiportadores/deficiencia , Arginina/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Eliminación de Gen , Lisina/metabolismo , Proteínas de la Membrana/deficiencia , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
8.
Biosci Biotechnol Biochem ; 80(2): 279-87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26325352

RESUMEN

In the vacuolar basic amino acid (VBA) transporter family of Saccharomyces cerevisiae, VBA4 encodes a vacuolar membrane protein with 14 putative transmembrane helices. Transport experiments with isolated vacuolar membrane vesicles and estimation of the amino acid contents in vacuoles showed that Vba4p is not likely involved in the transport of amino acids. We found that the vba4Δ cells, as well as vba1Δ and vba2Δ cells, showed increased susceptibility to several drugs, particularly to azoles. Although disruption of the VBA4 gene did not affect the salt tolerance of the cells, vacuolar fragmentation observed under high salt conditions was less prominent in vba4Δ cells than in wild type, vba1Δ, and vba2Δ cells. Vba4p differs from Vba1p and Vba2p as a vacuolar transporter but is important for the drug resistance and vacuolar morphology of S. cerevisiae.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Aminoácidos/metabolismo , Transporte Biológico , Fluconazol/farmacología , Expresión Génica , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/ultraestructura , Cetoconazol/farmacología , Miconazol/farmacología , Forma de los Orgánulos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Tolerancia a la Sal , Cloruro de Sodio/farmacología , Vacuolas/efectos de los fármacos , Vacuolas/ultraestructura
9.
Biosci Biotechnol Biochem ; 79(12): 1972-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26083447

RESUMEN

Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/citología , Fusarium/genética , Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genoma Fúngico/genética , Datos de Secuencia Molecular , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
10.
PLoS One ; 10(6): e0130542, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26083598

RESUMEN

In Saccharomyces cerevisiae, Avt3p and Avt4p mediate the extrusion of several amino acids from the vacuolar lumen into the cytosol. SpAvt3p of Schizosaccharomyces pombe, a homologue of these vacuolar amino acid transporters, has been indicated to be involved in spore formation. In this study, we confirmed that GFP-SpAvt3p localized to the vacuolar membrane in S. pombe. The amounts of various amino acids increased significantly in the vacuolar pool of avt3Δ cells, but decreased in that of avt3+-overexpressing avt3Δ cells. These results suggest that SpAvt3p participates in the vacuolar compartmentalization of amino acids in S. pombe. To examine the export activity of SpAvt3p, we expressed the avt3+ gene in S. cerevisiae cells. We found that the heterologously overproduced GFP-SpAvt3p localized to the vacuolar membrane in S. cerevisiae. Using the vacuolar membrane vesicles isolated from avt3+-overexpressing S. cerevisiae cells, we detected the export activities of alanine and tyrosine in an ATP-dependent manner. These activities were inhibited by the addition of a V-ATPase inhibitor, concanamycin A, thereby suggesting that the activity of SpAvt3p is dependent on a proton electrochemical gradient generated by the action of V-ATPase. In addition, the amounts of various amino acids in the vacuolar pools of S. cerevisiae cells were decreased by the overproduction of SpAvt3p, which indicated that SpAvt3p was functional in S. cerevisiae cells. Thus, SpAvt3p is a vacuolar transporter that is involved in the export of amino acids from S. pombe vacuoles.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Vacuolas/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Transporte Biológico , Immunoblotting , Membranas Intracelulares , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia de Aminoácido
11.
Biosci Biotechnol Biochem ; 79(5): 782-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25747199

RESUMEN

Several genes for vacuolar amino acid transport were reported in Saccharomyces cerevisiae, but have not well been investigated. We characterized AVT1, a member of the AVT vacuolar transporter family, which is reported to be involved in lifespan of yeast. ATP-dependent uptake of isoleucine and histidine by the vacuolar vesicles of an AVT exporter mutant was lost by introducing avt1∆ mutation. Uptake activity was inhibited by the V-ATPase inhibitor: concanamycin A and a protonophore. Isoleucine uptake was inhibited by various neutral amino acids and histidine, but not by γ-aminobutyric acid, glutamate, and aspartate. V-ATPase-dependent acidification of the vesicles was declined by the addition of isoleucine or histidine, depending upon Avt1p. Taken together with the data of the amino acid contents of vacuolar fractions in cells, the results suggested that Avt1p is a proton/amino acid antiporter important for vacuolar compartmentalization of various amino acids.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos Neutros/metabolismo , Antiportadores/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Antiportadores/genética , Ácido Aspártico/metabolismo , Transporte Biológico , Ácido Glutámico/metabolismo , Histidina/metabolismo , Membranas Intracelulares/metabolismo , Isoleucina/metabolismo , Protones , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ácido gamma-Aminobutírico/metabolismo
12.
Biosci Biotechnol Biochem ; 79(2): 190-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25266154

RESUMEN

Active transport systems for various amino acids operate in the vacuolar membrane of Saccharomyces cerevisiae. The gene families for vacuolar amino acid transporters were identified by reverse genetics experiments. In the AVT transporter family, Avt1p works for active uptake of amino acid into vacuole, and Avt3p, Avt4p, and Avt6p for active extrusion of amino acid from vacuole to cytosol. Here, we found green fluorescent protein-tagged Avt7p, an unidentified member of the AVT family, localized to the vacuolar membrane of S. cerevisiae. Disruption of the AVT7 gene enhanced both vacuolar contents of several amino acids and uptake activities of glutamine and proline by vacuolar membrane vesicles. Efficiency of spore formation was impaired by the disruption of the AVT7 gene, suggesting the physiological importance of Avt7p-dependent efflux of amino acid from vacuoles under nutrient-poor condition.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/fisiología , Membranas Intracelulares/metabolismo , Nitrógeno/deficiencia , Transporte de Proteínas , Saccharomyces cerevisiae/fisiología , Vacuolas/metabolismo
13.
Biosci Biotechnol Biochem ; 78(7): 1199-202, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25229858

RESUMEN

Saccharomyces cerevisiae Ypq1p is a vacuolar membrane protein of the PQ-loop protein family. We found that ATP-dependent uptake activities of amino acids by vacuolar membrane vesicles were impaired by ypq1∆ mutation. Loss of lysine uptake was most remarkable, and the uptake was recovered by overproduction of Ypq1p. Ypq1p is thus involved in transport of amino acids into vacuoles.


Asunto(s)
Adenosina Trifosfato/metabolismo , Membranas Intracelulares/metabolismo , Lisina/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Vacuolas/metabolismo , Transporte Biológico/genética , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
Biosci Biotechnol Biochem ; 78(6): 969-75, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036121

RESUMEN

Basic amino acids (lysine, histidine and arginine) accumulated in Saccharomyces cerevisiae vacuoles should be mobilized to cytosolic nitrogen metabolism under starvation. We found that the decrease of vacuolar basic amino acids in response to nitrogen starvation was impaired by the deletion of AVT4 gene encoding a vacuolar transporter. In addition, overexpression of AVT4 reduced the accumulation of basic amino acids in vacuoles under nutrient-rich condition. In contrast to AVT4, the deletion and overexpression of AVT3, which encodes the closest homologue of Avt4p, did not affect the contents of vacuolar basic amino acids. Consistent with these, arginine uptake into vacuolar membrane vesicles was decreased by Avt4p-, but not by Avt3p-overproduction, whereas various neutral amino acids were excreted from vacuolar membrane vesicles in a manner dependent on either Avt4p or Avt3p. These results suggest that Avt4p is a vacuolar amino acid exporter involving in the recycling of basic amino acids.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos Básicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/química , Transporte Biológico , Membranas Intracelulares/metabolismo , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae/química
15.
J Toxicol Sci ; 39(2): 311-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24646713

RESUMEN

Tributyltin (TBT) has long been recognized as a major environmental pollutant that can cause significant damage to the cellular functions as well as disruption of endocrine homeostasis. TBT induces apoptosis accompanied by production of reactive oxygen species (ROS) in mammalian and yeast cells. We observed that the budding yeast cells exposed to this compound at low concentrations exhibited cell growth arrest, but not cell death. Flow cytometric analysis of yeast cells without synchronization and morphological assessment of cells synchronized at M phase by nocodazole treatment indicated that TBT-exposed Saccharomyces cerevisiae cells were arrested at G1 phase of the cell cycle. This arrest was recovered by the addition of N-acetylcysteine, suggesting the involvement of ROS production by TBT. This is the first study to evaluate the action of TBT on cell cycle events.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Fase G1/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Compuestos de Trialquiltina/toxicidad , Apoptosis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Nocodazol/farmacología
16.
Biosci Biotechnol Biochem ; 77(9): 1988-90, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24018691

RESUMEN

A vacuolar membrane protein, Vba2p of Schizosaccharomyces pombe, is involved in basic amino acid uptake by intact cells. Here we found evidence that Vba2p mediated ATP-dependent lysine uptake by vacuolar membrane vesicles of Saccharomyces cerevisiae. Vba2p was also responsible for quinidine sensitivity, and the addition of lysine improved cell growth on quinidine-containing media. These findings should be useful for further characterization of Vba2p.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Vacuolas/genética , Adenosina Trifosfato/metabolismo , Expresión Génica , Lisina/metabolismo
17.
PLoS One ; 8(9): e74291, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24058539

RESUMEN

Vacuolar ATPases (V-ATPases) function as proton pumps in various cellular membrane systems. The hydrophilic V1 portion of the V-ATPase is a rotary motor, in which a central-axis DF complex rotates inside a hexagonally arranged catalytic A3B3 complex by using ATP hydrolysis energy. We have previously reported crystal structures of Enterococcushirae V-ATPase A3B3 and A3B3DF (V1) complexes; the result suggested that the DF axis induces structural changes in the A3B3 complex through extensive protein-protein interactions. In this study, we mutated 10 residues at the interface between A3B3 and DF complexes and examined the ATPase activities of the mutated V1 complexes as well as the binding affinities between the mutated A3B3 and DF complexes. Surprisingly, several V1 mutants showed higher initial ATPase activities than wild-type V1-ATPase, whereas these mutated A3B3 and DF complexes showed decreased binding affinities for each other. However, the high ATP hydrolysis activities of the mutants decreased faster over time than the activity of the wild-type V1 complex, suggesting that the mutants were unstable in the reaction because the mutant A3B3 and DF complexes bound each other more weakly. These findings suggest that strong interaction between the DF complex and A3B3 complex lowers ATPase activity, but also that the tight binding is responsible for the stable ATPase activity of the complex.


Asunto(s)
Enterococcus/enzimología , Complejos Multiproteicos/metabolismo , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Dominio Catalítico , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Modelos Moleculares , Proteínas Mutantes/metabolismo , Unión Proteica , Resonancia por Plasmón de Superficie
18.
Nature ; 493(7434): 703-7, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23334411

RESUMEN

In various cellular membrane systems, vacuolar ATPases (V-ATPases) function as proton pumps, which are involved in many processes such as bone resorption and cancer metastasis, and these membrane proteins represent attractive drug targets for osteoporosis and cancer. The hydrophilic V(1) portion is known as a rotary motor, in which a central axis DF complex rotates inside a hexagonally arranged catalytic A(3)B(3) complex using ATP hydrolysis energy, but the molecular mechanism is not well defined owing to a lack of high-resolution structural information. We previously reported on the in vitro expression, purification and reconstitution of Enterococcus hirae V(1)-ATPase from the A(3)B(3) and DF complexes. Here we report the asymmetric structures of the nucleotide-free (2.8 Å) and nucleotide-bound (3.4 Å) A(3)B(3) complex that demonstrate conformational changes induced by nucleotide binding, suggesting a binding order in the right-handed rotational orientation in a cooperative manner. The crystal structures of the nucleotide-free (2.2 Å) and nucleotide-bound (2.7 Å) V(1)-ATPase are also reported. The more tightly packed nucleotide-binding site seems to be induced by DF binding, and ATP hydrolysis seems to be stimulated by the approach of a conserved arginine residue. To our knowledge, these asymmetric structures represent the first high-resolution view of the rotational mechanism of V(1)-ATPase.


Asunto(s)
Enterococcus/enzimología , Modelos Moleculares , ATPasas de Translocación de Protón Vacuolares/química , Sitios de Unión , Cristalización , Enterococcus/genética , Mutación , Nucleótidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína , Rotación , ATPasas de Translocación de Protón Vacuolares/genética
19.
Springerplus ; 2: 689, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24404436

RESUMEN

Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble functional domain V1 (A3B3DF) and an integral membrane domain Vo (ac), where V1 and Vo domains are connected by a central stalk, composed of D-, F-, and d-subunits; and two peripheral stalks (E- and G-subunits). We identified 120 interacting residues of A3B3 heterohexamer with D-subunit in DF heterodimer in the crystal structures of A3B3 and A3B3DF. In our previous study, we reported 10 mutants of E. hirae V1-ATPase, which showed lower binding affinities of DF with A3B3 complex leading to higher initial specific ATPase activities compared to the wild-type. In this study, we identified a mutation of A-subunit (LV(476-7)AA) at its C-terminal domain resulting in the A3B3 complex with higher binding affinities for wild-type or mutant DF heterodimers and lower initial ATPase activities compared to the wild-type A3B3 complex, consistent with our previous proposal of reciprocal relationship between the ATPase activity and the protein-protein binding affinity of DF axis to the A3B3 catalytic domain of E. hirae V-ATPase. These observations suggest that the binding of DF axis at the contact region of A3B3 rotary ring is relevant to its rotation activity.

20.
Biosci Biotechnol Biochem ; 76(10): 1993-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23047103

RESUMEN

Vba5p is closest to Vba3p in the vacuolar transporter for basic amino acids (VBA) family of Saccharomyces cerevisiae. We found that green fluorescence protein (GFP)-tagged Vba5p localized exclusively to the plasma membrane. The uptake of lysine and arginine by whole cells was little affected by deletion of the VBA5 gene, but was stimulated by overexpression of the VBA5 gene. The inhibitory effect of 4-nitroquinoline N-oxide on cell growth was accelerated by expression of the VBA5 gene, and was lessened by the addition of arginine. These results suggest that Vba5p is a plasma membrane protein involved in amino acid uptake and drug sensitivity.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , 4-Nitroquinolina-1-Óxido/farmacología , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/química , Transporte Biológico/efectos de los fármacos , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...