Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G747-G761, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591148

RESUMEN

Insufficient expression of steroidogenic acute regulatory-related lipid transfer protein 5 (StarD5) on liver cholesterol/lipid homeostasis is not clearly defined. The ablation of StarD5 was analyzed in mice on a normal or Western diet (WD) to determine its importance in hepatic lipid accumulation and fibrosis compared with wild-type (WT) mice. Rescue experiments in StarD5-/- mice and hepatocytes were performed. In addition to increased hepatic triglyceride (TG)-cholesterol levels, global StarD5-/- mice fed a normal diet displayed reduced plasma triglycerides and liver very low-density lipoprotein (VLDL) secretion as compared with WT counterparts. Insulin levels and homeostatic model assessment for insulin resistance (HOMA-IR) scoring were elevated, demonstrating developing insulin resistance (IR). WD-fed StarD5-/- mice upregulated WW domain containing transcription regulator 1 (TAZ or WWTR1) expression with accelerated liver fibrosis when compared with WD-fed WT mice. Suppression of oxysterol 7α-hydroxylase (CYP7B1) coupled with chronic accumulation of toxic oxysterol levels correlated with presentation of fibrosis. "Hepatocyte-selective" StarD5 overexpression in StarD5-/- mice restored expression, reduced hepatic triglycerides, and improved HOMA-IR. Observations in two additional mouse and one human metabolic dysfunction-associated steatotic liver disease (MASLD) model were supportive. The downregulation of StarD5 with hepatic lipid excess is a previously unappreciated physiological function appearing to promote lipid storage for future needs. Conversely, lingering downregulation of StarD5 with prolonged lipid-cholesterol excess accelerates fatty liver's transition to fibrosis; mediated via dysregulation in the oxysterol signaling pathway.NEW & NOTEWORTHY We have found that deletion of the cholesterol transport protein StarD5 in mice leads to an increase in insulin resistance and lipid accumulation due to the upregulation of lipid synthesis and decrease VLDL secretion from the liver. In addition, deletion of StarD5 increased fibrosis when mice were fed a Western diet. This represents a novel pathway of fibrosis development in the liver.


Asunto(s)
Resistencia a la Insulina , Cirrosis Hepática , Hígado , Ratones Noqueados , Animales , Humanos , Masculino , Ratones , Colesterol/metabolismo , Colesterol/sangre , Dieta Occidental/efectos adversos , Progresión de la Enfermedad , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Ratones Endogámicos C57BL , Triglicéridos/metabolismo
2.
Mol Genet Metab ; 140(1-2): 107703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37802748

RESUMEN

OBJECTIVE: To examine whether it is possible to screen for bile acid synthesis disorders (BASDs) including peroxisome biogenesis disorder 1a (PBD1A) and Niemann-Pick type C1 (NPC1) at the time of newborn mass screening by measuring the intermediary metabolites of bile acid (BA) synthesis. METHODS: Patients with 3ß-hydroxy-ΔSuchy et al. (2021)5-C27-steroid dehydrogenase/isomerase (HSD3B7) deficiency (n = 2), 3-oxo-ΔPandak and Kakiyama (n.d.)4-steroid 5ß-reductase (SRD5B1) deficiency (n = 1), oxysterol 7α-hydroxylase (CYP7B1) deficiency (n = 1), PBD1A (n = 1), and NPC1 (n = 2) with available dried blood spot (DBS) samples collected in the neonatal period were included. DBSs from healthy neonates at 4 days of age (n = 1055) were also collected for the control. Disease specific BAs were measured by newly optimized liquid chromatography-tandem mass spectrometry with short run cycle (5-min/run). The results were validated by comparing with those obtained by the conventional condition with longer run cycle (76-min/run). RESULTS: In healthy specimens, taurocholic acid and cholic acid were the two major BAs which constituted approximately 80% in the measured BAs. The disease marker BAs presented <10%. In BASDs, the following BAs were determined for the disease specific markers: Glyco/tauro 3ß,7α,12α-trihydroxy-5-cholenoic acid 3-sulfate for HSD3B7 deficiency (>70%); glyco/tauro 7α,12α-dihydroxy-3-oxo-4-cholenoic acid for SRD5B1 deficiency (54%); tauro 3ß-hydroxy-5-cholenoic acid 3-sulfate for CYP7B1 deficiency (94%); 3α,7α,12α-trihydroxy-5ß-cholestanoic acid for PBD1A (78%); and tauro 3ß,7ß-dihydroxy-5-cholenoic acid 3-sulfate for NPC1 (26%). *The % in the parenthesis indicates the portion found in the patient's specimen. CONCLUSIONS: Early postnatal screening for BASDs, PBD1A and NPC1 is feasible with the described DBS-based method by measuring disease specific BAs. The present method is a quick and affordable test for screening for these inherited diseases.


Asunto(s)
Hepatopatías , Síndrome de Zellweger , Recién Nacido , Humanos , Ácidos y Sales Biliares , Tamizaje Neonatal , Esteroides , Sulfatos
3.
Cells ; 12(10)2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37408268

RESUMEN

The rising prevalence of nonalcoholic fatty liver disease (NAFLD)-related cirrhosis highlights the need for a better understanding of the molecular mechanisms responsible for driving the transition of hepatic steatosis (fatty liver; NAFL) to steatohepatitis (NASH) and fibrosis/cirrhosis. Obesity-related insulin resistance (IR) is a well-known hallmark of early NAFLD progression, yet the mechanism linking aberrant insulin signaling to hepatocyte inflammation has remained unclear. Recently, as a function of more distinctly defining the regulation of mechanistic pathways, hepatocyte toxicity as mediated by hepatic free cholesterol and its metabolites has emerged as fundamental to the subsequent necroinflammation/fibrosis characteristics of NASH. More specifically, aberrant hepatocyte insulin signaling, as found with IR, leads to dysregulation in bile acid biosynthetic pathways with the subsequent intracellular accumulation of mitochondrial CYP27A1-derived cholesterol metabolites, (25R)26-hydroxycholesterol and 3ß-Hydroxy-5-cholesten-(25R)26-oic acid, which appear to be responsible for driving hepatocyte toxicity. These findings bring forth a "two-hit" interpretation as to how NAFL progresses to NAFLD: abnormal hepatocyte insulin signaling, as occurs with IR, develops as a "first hit" that sequentially drives the accumulation of toxic CYP27A1-driven cholesterol metabolites as the "second hit". In the following review, we examine the mechanistic pathway by which mitochondria-derived cholesterol metabolites drive the development of NASH. Insights into mechanistic approaches for effective NASH intervention are provided.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácidos y Sales Biliares , Cirrosis Hepática/metabolismo , Resistencia a la Insulina/fisiología , Insulina , Colesterol
4.
J Lipid Res ; 64(5): 100363, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36966904

RESUMEN

CYP7B1 catalyzes mitochondria-derived cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) and 3ß-hydroxy-5-cholesten-(25R)26-oic acid (3ßHCA) and facilitates their conversion to bile acids. Disruption of 26HC/3ßHCA metabolism in the absence of CYP7B1 leads to neonatal liver failure. Disrupted 26HC/3ßHCA metabolism with reduced hepatic CYP7B1 expression is also found in nonalcoholic steatohepatitis (NASH). The current study aimed to understand the regulatory mechanism of mitochondrial cholesterol metabolites and their contribution to onset of NASH. We used Cyp7b1-/- mice fed a normal diet (ND), Western diet (WD), or high-cholesterol diet (HCD). Serum and liver cholesterol metabolites as well as hepatic gene expressions were comprehensively analyzed. Interestingly, 26HC/3ßHCA levels were maintained at basal levels in ND-fed Cyp7b1-/- mice livers by the reduced cholesterol transport to mitochondria, and the upregulated glucuronidation and sulfation. However, WD-fed Cyp7b1-/- mice developed insulin resistance (IR) with subsequent 26HC/3ßHCA accumulation due to overwhelmed glucuronidation/sulfation with facilitated mitochondrial cholesterol transport. Meanwhile, Cyp7b1-/- mice fed an HCD did not develop IR or subsequent evidence of liver toxicity. HCD-fed mice livers revealed marked cholesterol accumulation but no 26HC/3ßHCA accumulation. The results suggest 26HC/3ßHCA-induced cytotoxicity occurs when increased cholesterol transport into mitochondria is coupled to decreased 26HC/3ßHCA metabolism driven with IR. Supportive evidence for cholesterol metabolite-driven hepatotoxicity is provided in a diet-induced nonalcoholic fatty liver mouse model and by human specimen analyses. This study uncovers an insulin-mediated regulatory pathway that drives the formation and accumulation of toxic cholesterol metabolites within the hepatocyte mitochondria, mechanistically connecting IR to cholesterol metabolite-induced hepatocyte toxicity which drives nonalcoholic fatty liver disease.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Colesterol/metabolismo , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , Dieta Alta en Grasa , Ratones Endogámicos C57BL
5.
Metabolites ; 12(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36557268

RESUMEN

We investigated the age-dependent changes in urinary excretion of glucuronidated bile acids at the C-3 position. Bile acid 3-glucuronides accounted for 0.5% of urinary bile acids in neonates, and the proportion of bile acid 3-glucuronides plateaued at 1-3 years of age. The 3-glucuronides of secondary bile acids were first secreted at 3 months of age, the same time as the establishment of the gut bacterial flora in infants. A considerable portion of bile acid 3-glucuronides were present as non-amidated forms. Our results indicate dynamic hepatic enzyme activity in which the levels of uridine 5'-diphospho-glucuronosyltransferases (UGTs) differ by age group, with higher glucuronidation activity of UGTs towards nonamidated bile acids than amidated bile acids.

6.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G488-G500, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36193897

RESUMEN

Oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic pathway" of cholesterol metabolism. Previously, we demonstrated that an inability to upregulate CYP7B1 in the setting of insulin resistance leads to the accumulation of cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) that initiate and promote hepatocyte injury; followed by an inflammatory response. The current study demonstrates that dietary coffee improves insulin resistance and restores Cyp7b1 levels in a well-characterized Western diet (WD)-induced nonalcoholic fatty liver disease (NAFLD) mouse model. Ingestion of a WD containing caffeinated (regular) coffee or decaffeinated coffee markedly reduced the serum ALT level and improved insulin resistance. Cyp7b1 mRNA and protein levels were preserved at normal levels in mice fed the coffee containing WD. Additionally, coffee led to upregulated steroid sulfotransferase 2b1 (Sult2b1) mRNA expression. In accordance with the response in these oxysterol metabolic genes, hepatocellular 26HC levels were maintained at physiologically low levels. Moreover, the current study provided evidence that hepatic Cyp7b1 and Sult2b1 responses to insulin signaling can be mediated through a transcriptional factor, hepatocyte nuclear factor (HNF)-4α. We conclude coffee achieves its beneficial effects through the modulation of insulin resistance. Both decaffeinated and caffeinated coffee had beneficial effects, demonstrating caffeine is not fundamental to this effect. The effects of coffee feeding on the insulin-HNF4α-Cyp7b1 signaling pathway, whose dysregulation initiates and contributes to the onset and progression of NASH as triggered by insulin resistance, offer mechanistic insight into approaches for the treatment of NAFLD.NEW & NOTEWORTHY This study demonstrated dietary coffee prevented the accumulation of hepatic oxysterols by maintaining Cyp7b1/Sult2b1 expression in a diet-induced NAFLD mice model. Lowering liver oxysterols markedly reduced inflammation in the coffee-ingested mice. Caffeine is not fundamental to this effect. In addition, this study showed Cyp7b1/Sult2b1 responses to insulin signaling can be mediated through a transcriptional factor, HNF4α. The insulin-HNF4α-Cyp7b1/Sult2b1 signaling pathway, which directly correlates to the onset of NASH triggered by insulin resistance, offers insight into approaches for NAFLD treatment.


Asunto(s)
Hepatitis , Resistencia a la Insulina , Insulinas , Enfermedad del Hígado Graso no Alcohólico , Oxiesteroles , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxiesteroles/metabolismo , Café/metabolismo , Cafeína/farmacología , Cafeína/metabolismo , Hígado/metabolismo , Modelos Animales de Enfermedad , Colesterol/metabolismo , Hepatitis/metabolismo , Factores Nucleares del Hepatocito/metabolismo , ARN Mensajero/metabolismo , Insulinas/metabolismo , Familia 7 del Citocromo P450/metabolismo , Esteroide Hidroxilasas/metabolismo
7.
J Lipid Res ; 63(10): 100275, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36089004

RESUMEN

Although most bile acids (BAs) in feces are present in noncovalent forms that can be extracted with ethanol, non-negligible amounts of saponifiable BAs are also present. It is a major concern that such saponifiable BAs are routinely omitted from fecal BA measurements. We compared the BA profiles of healthy stools that were obtained with/without alkaline hydrolysis and found that as much as 29.7% (2.1-67.7%) of total BAs were saponifiable. Specifically, alkaline treatment led to significant elevations of isodeoxycholic acid (isoDCA) and isolithocholic acid (isoLCA) concentrations, suggesting that considerable proportions of isoDCA and isoLCA were esterified. Precursor ion scan data from LC/MS suggested the presence of long-chain FA-linked BAs. We chemically synthesized a series of fatty acid 3ß-acyl conjugates of isoDCA and isoLCA as analytical standards and analyzed their fecal profiles from newborns to adults (n = 64) by LC/MS. FA-conjugated isobile acids (FA-isoBAs) were constantly present from 2 years of age to adulthood. C16- and C18-chain FA-isoBA esters were predominantly found regardless of age, but small amounts of acetic acid esters were also found. FA-isoBA concentrations were not correlated to fecal FA concentrations. Interestingly, there were some adults who did not have FA-isoBAs. Gut bacteria involved in the production of FA-isoBAs have not been identified yet. The present study provides insight into the establishment of early gut microbiota and the interactive development of esterified BAs.The contribution of FA-isoBAs to gut physiology and their role in pathophysiologic conditions such as inflammatory bowel disease are currently under investigation.


Asunto(s)
Ácidos y Sales Biliares , Hidroxiácidos , Recién Nacido , Adulto , Humanos , Ácidos y Sales Biliares/análisis , Hidroxiácidos/análisis , Heces/química , Ácidos Grasos , Ácido Litocólico/análisis , Etanol
8.
Sci Adv ; 7(30)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34301599

RESUMEN

Bile salt synthesis, secretion into the intestinal lumen, and resorption in the ileum occur in all vertebrate classes. In mammals, bile salt composition is determined by host and microbial enzymes, affecting signaling through the bile salt-binding transcription factor farnesoid X receptor (Fxr). However, these processes in other vertebrate classes remain poorly understood. We show that key components of hepatic bile salt synthesis and ileal transport pathways are conserved and under control of Fxr in zebrafish. Zebrafish bile salts consist primarily of a C27 bile alcohol and a C24 bile acid that undergo multiple microbial modifications including bile acid deconjugation that augments Fxr activity. Using single-cell RNA sequencing, we provide a cellular atlas of the zebrafish intestinal epithelium and uncover roles for Fxr in transcriptional and differentiation programs in ileal and other cell types. These results establish zebrafish as a nonmammalian vertebrate model for studying bile salt metabolism and Fxr signaling.


Asunto(s)
Ácidos y Sales Biliares , Pez Cebra , Animales , Ácidos y Sales Biliares/metabolismo , Intestinos , Hígado/metabolismo , Mamíferos/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo
10.
Cells ; 10(2)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494295

RESUMEN

The disease progression of nonalcoholic fatty liver disease (NAFLD) from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) is driven by multiple factors. Berberine (BBR) is an ancient Chinese medicine and has various beneficial effects on metabolic diseases, including NAFLD/NASH. However, the underlying mechanisms remain incompletely understood due to the limitation of the NASH animal models used. Methods: A high-fat and high-fructose diet-induced mouse model of NAFLD, the best available preclinical NASH mouse model, was used. RNAseq, histological, and metabolic pathway analyses were used to identify the potential signaling pathways modulated by BBR. LC-MS was used to measure bile acid levels in the serum and liver. The real-time RT-PCR and Western blot analysis were used to validate the RNAseq data. Results: BBR not only significantly reduced hepatic lipid accumulation by modulating fatty acid synthesis and metabolism but also restored the bile acid homeostasis by targeting multiple pathways. In addition, BBR markedly inhibited inflammation by reducing immune cell infiltration and inhibition of neutrophil activation and inflammatory gene expression. Furthermore, BBR was able to inhibit hepatic fibrosis by modulating the expression of multiple genes involved in hepatic stellate cell activation and cholangiocyte proliferation. Consistent with our previous findings, BBR's beneficial effects are linked with the downregulation of microRNA34a and long noncoding RNA H19, which are two important players in promoting NASH progression and liver fibrosis. Conclusion: BBR is a promising therapeutic agent for NASH by targeting multiple pathways. These results provide a strong foundation for a future clinical investigation.


Asunto(s)
Berberina/uso terapéutico , Progresión de la Enfermedad , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal , Animales , Berberina/farmacología , Ácidos y Sales Biliares/metabolismo , Dieta Occidental , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Ratones Endogámicos C57BL , Modelos Biológicos , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Transducción de Señal/efectos de los fármacos , Transcriptoma/genética
11.
BMC Microbiol ; 21(1): 24, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33430766

RESUMEN

BACKGROUND: Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. RESULTS: Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. Significant alterations in network topology and connectivity in function were observed, despite similarity in gut microbial alpha diversity (P = 0.30) and beta-diversity (P = 0.123) between control and BBR treatment. BBR increased cecal bile acid concentrations, (P < 0.05), most notably deoxycholic acid (DCA) (P < 0.001). Overall, analysis of transcriptomes and correlation networks indicates both bacterial species-specific responses to BBR, as well as functional commonalities among species, such as up-regulation of Na+/H+ antiporter, cell wall synthesis/repair, carbohydrate metabolism and amino acid metabolism. Bile acid concentrations in the GI tract increased significantly during BBR treatment and developed extensive correlation networks with expressed genes in the B4PC2 community. CONCLUSIONS: This work has important implications for interpreting the effects of BBR on structure and function of the complex gut microbiome, which may lead to targeted pharmaceutical interventions aimed to achieve the positive physiological effects previously observed with BBR supplementation.


Asunto(s)
Bacterias/clasificación , Proteínas Bacterianas/genética , Berberina/administración & dosificación , Ácidos y Sales Biliares/metabolismo , ARN Ribosómico 16S/genética , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Berberina/farmacología , ADN Bacteriano/genética , ADN Ribosómico/genética , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Masculino , Metabolómica , Ratones , Análisis de Secuencia de ARN , Especificidad de la Especie
12.
Dig Dis Sci ; 66(1): 263-272, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32189102

RESUMEN

INTRODUCTION: The prevalence of coronary artery disease (CAD) is high among patients with cirrhosis; however, the impact of it on cardiovascular disease (CVD) is not known. The aim of the current study was to evaluate CVD events in patients with cirrhosis and impact of cirrhosis on biomarkers of atherogenesis. METHODS: The study included 682 patients with decompensated cirrhosis referred for liver transplantation (LT) evaluation between 2010 and 2017. All patients were followed until they experienced a CVD event, non-cardiac death, liver transplantation or last follow-up. To evaluate mechanistic link, patients with NASH cirrhosis were propensity matched 1:2 to non-cirrhosis NASH patients and biomarkers of atherogenic risk were compared. RESULTS: The composite CVD outcome occurred in 23(3.4%) patients after a median follow-up period of 585 days (IQR 139, 747). A strong association between presence of any CAD and CVD event was noted (HR = 6.8, 95% CI 2.9, 15.9) that was independent of age, gender, BMI, and MELD score. In competing risk model, the combined rate of LT and non-cardiac was significantly higher when compared to the rate of CVD events. Marker of insulin resistance and inflammation-related markers were similar in patients with and without cirrhosis. Patients with cirrhosis were more likely to have reduced VLDL, sdLDL-C, LDL-C, and triglycerides. Interestingly, patients with cirrhosis had an increase in serum HDL-2, the anti-atherogenic lipoprotein, and adiponectin, a protective serum adipokine. CONCLUSION: The risk of CVD events in patients with cirrhosis is low and may potentially be due to improvement in markers of atherogenic risk.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Progresión de la Enfermedad , Mediadores de Inflamación/sangre , Trasplante de Hígado/tendencias , Enfermedad del Hígado Graso no Alcohólico/sangre , Aterosclerosis/sangre , Aterosclerosis/diagnóstico , Enfermedades Cardiovasculares/diagnóstico , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Cirrosis Hepática/sangre , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/cirugía , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/cirugía , Estudios Retrospectivos
13.
J Lipid Res ; 61(12): 1629-1644, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33008924

RESUMEN

NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic/alternative" pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.


Asunto(s)
Familia 7 del Citocromo P450/metabolismo , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Esteroide Hidroxilasas/metabolismo , Animales , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Oxiesteroles/metabolismo
14.
Steroids ; 164: 108730, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32961239

RESUMEN

Bile acid compositions are known to change dramatically after birth with aging. However, no reports have described the transition of conjugated urinary bile acids from the neonatal period to adulthood, and such findings would noninvasively offer insights into hepatic function. The aim of this study was to investigate differences in bile acid species, conjugation rates, and patterns, and to pool characteristics for age groups. We measured urinary bile acids in spot urine samples from 92 healthy individuals ranging from birth to 58 years old using liquid chromatography tandem mass spectrometry (LC/ESI-MS/MS). Sixty-six unconjugated and conjugated bile acids were systematically determined. After birth, urinary bile acids dramatically changed from fetal (i.e., Δ4-, Δ5-, and polyhydroxy-bile acids) to mature (i.e., CA and CDCA) bile acids. Peak bile acid excretion was 6-8 days after birth, steadily decreasing thereafter. A major change in bile acid conjugation pattern (taurine to glycine) also occurred at 2-4 months old. Our data provide important information regarding transitions of bile acid biosynthesis, including conjugation. The data also support the existence of physiologic cholestasis in the neonatal period and the establishment of the intestinal bacterial flora in infants.


Asunto(s)
Ácidos y Sales Biliares/orina , Adolescente , Adulto , Ácidos y Sales Biliares/normas , Niño , Preescolar , Cromatografía Liquida/métodos , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Estándares de Referencia , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Adulto Joven
15.
Gut Microbes ; 11(3): 381-404, 2020 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31177942

RESUMEN

The formation of secondary bile acids by gut microbes is a current topic of considerable biomedical interest. However, a detailed understanding of the biology of anaerobic bacteria in the genus Clostridium that are capable of generating secondary bile acids is lacking. We therefore sought to determine the transcriptional responses of two prominent secondary bile acid producing bacteria, Clostridium hylemonae and Clostridium hiranonis to bile salts (in vitro) and the cecal environment of gnotobiotic mice. The genomes of C. hylemonae DSM 15053 and C. hiranonis DSM 13275 were closed, and found to encode 3,647 genes (3,584 protein-coding) and 2,363 predicted genes (of which 2,239 are protein-coding), respectively, and 1,035 orthologs were shared between C. hylemonae and C. hiranonis. RNA-Seq analysis was performed in growth medium alone, and in the presence of cholic acid (CA) and deoxycholic acid (DCA). Growth with CA resulted in differential expression (>0.58 log2FC; FDR < 0.05) of 197 genes in C. hiranonis and 118 genes in C. hylemonae. The bile acid-inducible operons (bai) from each organism were highly upregulated in the presence of CA but not DCA. We then colonized germ-free mice with human gut bacterial isolates capable of metabolizing taurine-conjugated bile acids. This consortium included bile salt hydrolase-expressing Bacteroides uniformis ATCC 8492, Bacteroides vulgatus ATCC 8482, Parabacteroides distasonis DSM 20701, as well as taurine-respiring Bilophila wadsworthia DSM 11045, and deoxycholic/lithocholic acid generating Clostridium hylemonae DSM 15053 and Clostridium hiranonis DSM 13275. Butyrate and iso-bile acid-forming Blautia producta ATCC 27340 was also included. The Bacteroidetes made up 84.71% of 16S rDNA cecal reads, B. wadsworthia, constituted 14.7%, and the clostridia made up <.75% of 16S rDNA cecal reads. Bile acid metabolomics of the cecum, serum, and liver indicate that the synthetic community were capable of functional bile salt deconjugation, oxidation/isomerization, and 7α-dehydroxylation of bile acids. Cecal metatranscriptome analysis revealed expression of genes involved in metabolism of taurine-conjugated bile acids. The in vivo transcriptomes of C. hylemonae and C. hiranonis suggest fermentation of simple sugars and utilization of amino acids glycine and proline as electron acceptors. Genes predicted to be involved in trimethylamine (TMA) formation were also expressed.


Asunto(s)
Bacterias Anaerobias/genética , Bacterias Anaerobias/metabolismo , Ácidos y Sales Biliares/metabolismo , Ciego/microbiología , Metaboloma , Transcriptoma , Animales , Bacteroides/genética , Bacteroides/metabolismo , Bilophila/genética , Bilophila/metabolismo , Ácidos Cólicos/metabolismo , Clostridium/genética , Clostridium/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Genómica , Vida Libre de Gérmenes , Humanos , Ratones , Ratones Endogámicos C57BL , Microbiota , Operón , RNA-Seq , Regulación hacia Arriba
16.
JCI Insight ; 4(24)2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31751317

RESUMEN

BACKGROUNDHepatic encephalopathy (HE) is associated with poor outcomes. A prior randomized, pilot trial demonstrated safety after oral capsular fecal microbial transplant (FMT) in HE, with favorable changes in microbial composition and cognition. However, microbial functional changes are unclear. The aim of this study was to determine the effect of FMT on the gut-brain axis compared with placebo, using microbial function based on bile acids (BAs), inflammation (serum IL-6, LPS-binding protein [LBP]), and their association with EncephalApp.METHODSTwenty cirrhotic patients were randomized 1:1 into groups that received 1-time FMT capsules from a donor enriched in Lachnospiraceae and Ruminococcaceae or placebo capsules, with 5-month follow-up for safety outcomes. Stool microbiota and BA; serum IL-6, BA, and LBP; and EncephalApp were analyzed at baseline and 4 weeks after FMT/placebo. Correlation networks among microbiota, BAs, EncephalApp, IL-6, and LBP were performed before/after FMT.RESULTSFMT-assigned participants had 1 HE recurrence and 2 unrelated infections. Six placebo-assigned participants developed negative outcomes. FMT, but not placebo, was associated with reduced serum IL-6 and LBP and improved EncephalApp. FMT-assigned participants demonstrated higher deconjugation and secondary BA formation in feces and serum compared with baseline. No change was seen in placebo. Correlation networks showed greater complexity after FMT compared with baseline. Beneficial taxa, such as Ruminococcaceae, Verrucomicrobiaceae, and Lachnospiraceae, were correlated with cognitive improvement and decrease in inflammation after FMT. Fecal/serum secondary/primary ratios and PiCRUST secondary BA pathways did not increase in participants who developed poor outcomes.CONCLUSIONGut microbial function in cirrhosis is beneficially affected by capsular FMT, with improved inflammation and cognition. Lower secondary BAs in FMT recipients could select for participants who develop negative outcomes.TRIAL REGISTRATIONClinicaltrials.gov NCT03152188.FUNDINGNational Center for Advancing Translational Sciences NIH grant R21TR002024, VA Merit Review grant 2I0CX001076, the United Kingdom National Institute for Health Research Biomedical Facility at Imperial College London, the British Heart Foundation, Wellcome Trust, and King's College London.


Asunto(s)
Cognición/fisiología , Trasplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiología , Encefalopatía Hepática/terapia , Cirrosis Hepática/terapia , Adulto , Anciano , Cápsulas , Heces/microbiología , Femenino , Encefalopatía Hepática/etiología , Encefalopatía Hepática/microbiología , Encefalopatía Hepática/fisiopatología , Humanos , Cirrosis Hepática/complicaciones , Cirrosis Hepática/microbiología , Cirrosis Hepática/fisiopatología , Masculino , Persona de Mediana Edad , Placebos/administración & dosificación , Resultado del Tratamiento , Reino Unido , Adulto Joven
17.
J Lipid Res ; 60(6): 1087-1098, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31015253

RESUMEN

How plasma membrane (PM) cholesterol is controlled is poorly understood. Ablation of the gene encoding the ER stress steroidogenic acute regulatory-related lipid transfer domain (StarD)5 leads to a decrease in PM cholesterol content, a decrease in cholesterol efflux, and an increase in intracellular neutral lipid accumulation in macrophages, the major cell type that expresses StarD5. ER stress increases StarD5 expression in mouse hepatocytes, which results in an increase in accessible PM cholesterol in WT but not in StarD5-/- hepatocytes. StarD5-/- mice store higher levels of cholesterol and triglycerides, which leads to altered expression of cholesterol-regulated genes. In vitro, a recombinant GST-StarD5 protein transfers cholesterol between synthetic liposomes. StarD5 overexpression leads to a marked increase in PM cholesterol. Phasor analysis of 6-dodecanoyl-2-dimethylaminonaphthalene fluorescence lifetime imaging microscopy data revealed an increase in PM fluidity in StarD5-/- macrophages. Taken together, these studies show that StarD5 is a stress-responsive protein that regulates PM cholesterol and intracellular cholesterol homeostasis.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Macrófagos Peritoneales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Células CHO , Células Cultivadas , Colesterol/metabolismo , Cricetulus , Retículo Endoplásmico/metabolismo , Femenino , Homeostasis/genética , Homeostasis/fisiología , Immunoblotting , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , ARN Mensajero , Triglicéridos/metabolismo
18.
Clin Gastroenterol Hepatol ; 17(12): 2581-2591.e15, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30905718

RESUMEN

BACKGROUND & AIMS: Patients with cirrhosis have intestinal dysbiosis and are prone to itching and skin or soft-tissue infections. The skin microbiome, and its relationship with intestinal microbiome, have not been characterized. We investigated alterations in skin microbiota of patients with cirrhosis and their association with intestinal microbiota and modulators of itch. METHODS: We collected skin swabs at 7 sites and blood and stool samples from 20 healthy individuals (control subjects; mean age, 59 years) and 50 patients with cirrhosis (mean age, 61 years; mean model for end-stage disease score, 12; 20 with decompensation). Skin and stool samples were analyzed by 16s rRNA sequencing and serum samples were analyzed by liquid chromatography and mass spectrometry for levels of bile acids (BAs) and by an ELISA for autotaxin (an itch modulator). Participants were analyzed by the visual analog itch scale (VAS, 0-10,10 = maximum intensity). Data were compared between groups (cirrhosis vs control subjects, with vs without decompensation, VAS 5 or higher vs less than 5). Correlation networks between serum levels of BAs and skin microbiomes were compared between patients with cirrhosis with vs without itching. RESULTS: The composition of microbiomes at all skin sites differed between control subjects and patients with cirrhosis and between patients with compensated vs decompensated cirrhosis. Skin microbiomes of patients with cirrhosis (especially those with decompensation) contained a higher relative abundance of Gammaproteobacteria, Streptococaceae, and Staphylococcaceae, and fecal microbiomes contained a higher relative abundance of Gammaproteobacteria, than control subjects. These bacterial taxa were associated with serum levels of autotaxin and BAs, which were higher in patients with VAS scores ≥5. Based on network statistics, microbial and BA interactions at all sites were more complex in patients with greater levels of itching in the shin, the most common site of itch. CONCLUSIONS: We identified alterations in skin microbiome of patients with cirrhosis (in Gammaproteobacteria, Streptococcaceae, and Staphylococcaceae)-especially in patients with decompensation; fecal microbiomes of patients with cirrhosis had a higher relative abundance of Gammaproteobacteria than control subjects. These specific microbial taxa are associated with itching intensity and itch modulators, such as serum levels of BAs and autotaxin.


Asunto(s)
Cirrosis Hepática/complicaciones , Microbiota , Prurito/etiología , Piel/microbiología , Ácidos y Sales Biliares/sangre , Estudios de Casos y Controles , Heces/microbiología , Femenino , Gammaproteobacteria/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Hidrolasas Diéster Fosfóricas/sangre , Staphylococcaceae/aislamiento & purificación , Streptococcaceae/aislamiento & purificación , Escala Visual Analógica
19.
J Steroid Biochem Mol Biol ; 189: 36-47, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30710743

RESUMEN

The aim of this paper was to more completely study the mitochondrial CYP27A1 initiated acidic pathway of cholesterol metabolism. The mitochondrial CYP27A1 initiated pathway of cholesterol metabolism (acidic pathway) is known to synthesize two well-described vital regulators of cholesterol/lipid homeostasis, (25R)-26-hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). Both 26HC and 25HC have been shown to be subsequently 7α-hydroxylated by Cyp7b1; reducing their regulatory abilities and furthering their metabolism to chenodeoxycholic acid (CDCA). Cholesterol delivery into the inner mitochondria membrane, where CYP27A1 is located, is considered the pathway's only rate-limiting step. To further explore the pathway, we increased cholesterol transport into mitochondrial CYP27A1 by selectively increased expression of the gene encoding the steroidogenic acute transport protein (StarD1). StarD1 overexpression led to an unanticipated marked down-regulation of oxysterol 7α-hydroxylase (Cyp7b1), a marked increase in 26HC, and the formation of a third vital regulatory oxysterol, 24(S)-hydroxycholesterol (24HC), in B6/129 mice livers. To explore the further metabolism of 24HC, as well as, 25HC and 26HC, characterizations of oxysterols and bile acids using three murine models (StarD1 overexpression, Cyp7b1-/-, Cyp27a1-/-) and human Hep G2 cells were conducted. This report describes the discovery of a new mitochondrial-initiated pathway of oxysterol/bile acid biosynthesis. Just as importantly, it provides evidence for CYP7B1 as a key regulator of three vital intracellular regulatory oxysterol levels.


Asunto(s)
Familia 7 del Citocromo P450/metabolismo , Mitocondrias/metabolismo , Oxiesteroles/metabolismo , Esteroide Hidroxilasas/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Vías Biosintéticas , Células Hep G2 , Humanos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL
20.
Liver Res ; 3(2): 88-98, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32015930

RESUMEN

Over the last two decades, the prevalence of obesity, and metabolic syndromes (MS) such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), have dramatically increased. Bile acids play a major role in the digestion, absorption of nutrients, and the body's redistribution of absorbed lipids as a function of their chemistry and signaling properties. As a result, a renewed interest has developed in the bile acid metabolic pathways with the challenge of gaining insight into novel treatment approaches for this rapidly growing healthcare problem. Of the two major pathways of bile acid synthesis in the liver, the foremost role of the acidic (alternative) pathway is to generate and control the levels of regulatory oxysterols that help control cellular cholesterol and lipid homeostasis. Cholesterol transport to mitochondrial sterol 27-hydroxylase (CYP27A1) by steroidogenic acute regulatory protein (StarD1), and the subsequent 7α-hydroxylation of oxysterols by oxysterol 7α-hydroxylase (CYP7B1) are the key regulatory steps of the pathway. Recent observations suggest CYP7B1 to be the ultimate controller of cellular oxysterol levels. This review discusses the acidic pathway and its contribution to lipid, cholesterol, carbohydrate, and energy homeostasis. Additionally, discussed is how the acidic pathway's dysregulation not only leads to a loss in its ability to control cellular cholesterol and lipid homeostasis, but leads to inflammatory conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA