Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 106(2-2): 025205, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36109929

RESUMEN

A developing supercritical collisionless shock propagating in a homogeneously magnetized plasma of ambient gas origin having higher uniformity than the previous experiments is formed by using high-power laser experiment. The ambient plasma is not contaminated by the plasma produced in the early time after the laser shot. While the observed developing shock does not have stationary downstream structure, it possesses some characteristics of a magnetized supercritical shock, which are supported by a one-dimensional full particle-in-cell simulation taking the effect of finite time of laser-target interaction into account.

2.
Phys Rev E ; 105(2-2): 025203, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35291161

RESUMEN

We present an experimental method to generate quasiperpendicular supercritical magnetized collisionless shocks. In our experiment, ambient nitrogen (N) plasma is at rest and well magnetized, and it has uniform mass density. The plasma is pushed by laser-driven ablation aluminum (Al) plasma. Streaked optical pyrometry and spatially resolved laser collective Thomson scattering clarify structures of plasma density and temperatures, which are compared with one-dimensional particle-in-cell simulations. It is indicated that just after the laser irradiation, the Al plasma is magnetized by a self-generated Biermann battery field, and the plasma slaps the incident N plasma. The compressed external field in the N plasma reflects N ions, leading to counterstreaming magnetized N flows. Namely, we identify the edge of the reflected N ions. Such interacting plasmas form a magnetized collisionless shock.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...