Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1365490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571716

RESUMEN

Arabinogalactan proteins (AGPs) are proteoglycans with an unusual molecular structure characterised by the presence of a protein part and carbohydrate chains. Their specific properties at different stages of the fruit ripening programme make AGPs unique markers of this process. An important function of AGPs is to co-form an amorphous extracellular matrix in the cell wall-plasma membrane continuum; thus, changes in the structure of these molecules can determine the presence and distribution of other components. The aim of the current work was to characterise the molecular structure and localisation of AGPs during the fruit ripening process in transgenic lines with silencing and overexpression of SlP4H3 genes (prolyl 4 hydroxylase 3). The objective was accomplished through comprehensive and comparative in situ and ex situ analyses of AGPs from the fruit of transgenic lines and wild-type plants at specific stages of ripening. The experiment showed that changes in prolyl 4 hydroxylases (P4H3) activity affected the content of AGPs and the progress in their modifications in the ongoing ripening process. The analysis of the transgenic lines confirmed the presence of AGPs with high molecular weights (120-60 kDa) at all the examined stages, but a changed pattern of the molecular features of AGPs was found in the last ripening stages, compared to WT. In addition to the AGP molecular changes, morphological modifications of fruit tissue and alterations in the spatio-temporal pattern of AGP distribution at the subcellular level were detected in the transgenic lines with the progression of the ripening process. The work highlights the impact of AGPs and their alterations on the fruit cell wall and changes in AGPs associated with the progression of the ripening process.

2.
Cells ; 12(11)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37296587

RESUMEN

Olive (Olea europeae L.) salinity stress induces responses at morphological, physiological and molecular levels, affecting plant productivity. Four olive cultivars with differential tolerance to salt were grown under saline conditions in long barrels for regular root growth to mimic field conditions. Arvanitolia and Lefkolia were previously reported as tolerant to salinity, and Koroneiki and Gaidourelia were characterized as sensitive, exhibiting a decrease in leaf length and leaf area index after 90 days of salinity. Prolyl 4-hydroxylases (P4Hs) hydroxylate cell wall glycoproteins such as arabinogalactan proteins (AGPs). The expression patterns of P4Hs and AGPs under saline conditions showed cultivar-dependent differences in leaves and roots. In the tolerant cultivars, no changes in OeP4H and OeAGP mRNAs were observed, while in the sensitive cultivars, the majority of OeP4Hs and OeAGPs were upregulated in leaves. Immunodetection showed that the AGP signal intensity and the cortical cell size, shape and intercellular spaces under saline conditions were similar to the control in Arvanitolia, while in Koroneiki, a weak AGP signal was associated with irregular cells and intercellular spaces, leading to aerenchyma formation after 45 days of NaCl treatment. Moreover, the acceleration of endodermal development and the formation of exodermal and cortical cells with thickened cell walls were observed, and an overall decrease in the abundance of cell wall homogalacturonans was detected in salt-treated roots. In conclusion, Arvanitolia and Lefkolia exhibited the highest adaptive capacity to salinity, indicating that their use as rootstocks might provide increased tolerance to irrigation with saline water.


Asunto(s)
Olea , Prolil Hidroxilasas , Cloruro de Sodio/farmacología , Estrés Salino , Procolágeno-Prolina Dioxigenasa
3.
BMC Plant Biol ; 23(1): 45, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670377

RESUMEN

The aim of this report is to provide general information on the molecular structure and synthesis of arabinogalactan proteins (AGPs) in association to their physiological significance. Assessment of genetic modifications of the activity of enzymes involved in the AGP biosynthesis is an efficient tool to study AGP functions. Thus, P4H (prolyl 4 hydroxylase) mutants, GLCAT (ß-glucuronosyltransferase) mutants, and GH43 (glycoside hydrolase family 43) mutants have been described. We focused on the overview of AGPs modifications observed at the molecular, cellular, and organ levels. Inhibition of the hydroxylation process results in an increase in the intensity of cell divisions and thus, has an impact on root system length and leaf area. In turn, overexpression of P4H genes stimulates the density of root hairs. A mutation in GLCAT genes responsible for the transfer of glucuronic acid to the AGP molecule revealed that the reduction of GlcA in AGP disrupts the substantial assembly of the primary cell wall. Furthermore, silencing of genes encoding GH43, which has the ability to hydrolyze the AGP glycan by removing incorrectly synthesized ß-1,3-galactans, induces changes in the abundance of other cell wall constituents, which finally leads to root growth defects. This information provides insight into AGPs as a crucial players in the structural interactions present in the plant extracellular matrix.


Asunto(s)
Mucoproteínas , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Plantas/metabolismo , Pared Celular/metabolismo , Galactanos/metabolismo
4.
Front Plant Sci ; 12: 637352, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790927

RESUMEN

Plant responses to flooding, submergence and waterlogging are important for adaptation to climate change environments. Therefore, the characterization of the molecular mechanisms activated under hypoxic and anoxic conditions might lead to low oxygen resilient crops. Although in mammalian systems prolyl 4 hydroxylases (P4Hs) are involved in the oxygen sensing pathway, their role in plants under low oxygen has not been extensively investigated. In this report, an Arabidopsis AtP4H3 T-DNA knock out mutant line showed higher sensitivity to anoxic treatment possibly due to lower induction of the fermentation pathway genes, ADH and PDC1, and of sucrose synthases, SUS1 and SUS4. This sensitivity to anoxia was accompanied by lower protein levels of AGPs-bound epitopes such as LM14 in the mutant line and induction of extensins-bound epitopes, while the expression levels of the majority of the AGPs genes were stable throughout a low oxygen time course. The lower AGPs content might be related to altered frequency of proline hydroxylation occurrence in the p4h3 line. These results indicate active involvement of proline hydroxylation, a post-translational modification, to low oxygen response in Arabidopsis.

5.
Hortic Res ; 7(1): 176, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328442

RESUMEN

Arabinogalactan proteins (AGPs) are proteoglycans challenging researchers for decades. However, despite the extremely interesting polydispersity of their structure and essential application potential, studies of AGPs in fruit are limited, and only a few groups deal with this scientific subject. Here, we summarise the results of pioneering studies on AGPs in fruit tissue with their structure, specific localization pattern, stress factors influencing their presence, and a focus on recent advances. We discuss the properties of AGPs, i.e., binding calcium ions, ability to aggregate, adhesive nature, and crosslinking with other cell wall components that may also be implicated in fruit metabolism. The aim of this review is an attempt to associate well-known features and properties of AGPs with their putative roles in fruit ripening. The putative physiological significance of AGPs might provide additional targets of regulation for fruit developmental programme. A comprehensive understanding of the AGP expression, structure, and untypical features may give new information for agronomic, horticulture, and renewable biomaterial applications.

7.
Food Chem X ; 6: 100082, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32154510

RESUMEN

A plethora of biotechnological methodologies is used to authenticate quality olive oils. Among the DNA-based approaches, SNPs and SSRs combined with high resolution melting (HRM) provide certain advantages such as speed, simplicity and reliability. SNP-HRM and SSR-HRM were used for the authentication of monovarietal olive oils as well as the quantification of varietal composition in olive oil DNA admixtures and olive oil blends of two different cultivars. The SSR-HRM was more efficient in distinguishing monovarietal olive oils while the SNP-HRM assay was more reliable in discriminating olive oil blends. HRM was also used for the detection of adulteration of olive oil with oils of different plant origin by using plastid trnL indels and SNPs. The trnL-indels-HRM showed higher discrimination power than the trnL-SNP-HRM in determining adulteration in olive oil. These results indicate that traceability of adulteration might be more reliable than authentication of the varietal origin in olive oil blends.

8.
Plants (Basel) ; 9(2)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041306

RESUMEN

Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells' structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division and expansion during tissue differentiation, and acting as an environmental barrier that protects the cells in response to abiotic stress. Plant CW, comprised primarily of polysaccharides, represents the largest sink for photosynthetically fixed carbon, both in plants and in the biosphere. The CW structure is highly varied, not only between plant species but also among different organs, tissues, and cell types in the same organism. During the developmental processes, the main CW components, i.e., cellulose, pectins, hemicelluloses, and different types of CW-glycoproteins, interact constantly with each other and with the environment to maintain cell homeostasis. Differentiation processes are altered by positional effect and are also tightly linked to environmental changes, affecting CW both at the molecular and biochemical levels. The negative effect of climate change on the environment is multifaceted, from high temperatures, altered concentrations of greenhouse gases such as increasing CO2 in the atmosphere, soil salinity, and drought, to increasing frequency of extreme weather events taking place concomitantly, therefore, climate change affects crop productivity in multiple ways. Rising CO2 concentration in the atmosphere is expected to increase photosynthetic rates, especially at high temperatures and under water-limited conditions. This review aims to synthesize current knowledge regarding the effects of climate change on CW biogenesis and modification. We discuss specific cases in crops of interest carrying cell wall modifications that enhance tolerance to climate change-related stresses; from cereals such as rice, wheat, barley, or maize to dicots of interest such as brassica oilseed, cotton, soybean, tomato, or potato. This information could be used for the rational design of genetic engineering traits that aim to increase the stress tolerance in key crops. Future growing conditions expose plants to variable and extreme climate change factors, which negatively impact global agriculture, and therefore further research in this area is critical.

9.
Front Plant Sci ; 10: 348, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984217

RESUMEN

The tomato pedicel abscission zone (AZ) is considered a model system for flower and fruit abscission development, activation, and progression. O-glycosylated proteins such as the Arabidopsis IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) peptide and Arabinogalactan proteins (AGPs) which undergo proline hydroxylation were demonstrated to participate in abscission regulation. Considering that the frequency of occurrence of proline hydroxylation might determine the structure as well the function of such proteins, the expression of a tomato prolyl 4 hydroxylase, SlP4H3 (Solanum lycopersicum Prolyl 4 Hydroxylase 3) was suppressed in order to investigate the physiological significance of this post-translational modification in tomato abscission. Silencing of SlP4H3 resulted in the delay of abscission progression in overripe tomato fruits 90 days after the breaker stage. The cause of this delay was attributed to the downregulation of the expression of cell wall hydrolases such as SlTAPGs (tomato abscission polygalacturonases) and cellulases as well as expansins. In addition, minor changes were observed in the mRNA levels of two SlAGPs and one extensin. Moreover, structural changes were observed in the silenced SlP4H3AZs. The fracture plane of the AZ was curved and not along a line as in wild type and there was a lack of lignin deposition in the AZs of overripe fruits 30 days after breaker. These results suggest that proline hydroxylation might play a role in the regulation of tomato pedicel abscission.

10.
J Plant Physiol ; 231: 210-218, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30286324

RESUMEN

Olive is one of the most important fruit crop trees in the history of Mediterranean because of the high quality oil. Olive oil has a well-balanced fatty acid composition along with biophenols, which make it exceptional in human diet and provide an exceptional value to the olive oil. Leaf non-glandular peltate trichomes are specialized cell types representing a protective barrier against acute environmental conditions. To characterize the proteome of this highly differentiated cell type, we performed a comparative proteomic analysis among isolated trichomes and trichome-less leaves. Proteins were separated and identified using the 2-DE MALDI-TOF/MS method. A number of enzymes involved in abiotic and biotic stress responses are present and may be responsible for the adaptation to prolonged adverse environmental conditions. The results show that this highly differentiated cell type is physiologically active fulfilling the demands of the trichomes in furnishing the leaf with a highly protective mechanism.


Asunto(s)
Olea/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Tricomas/metabolismo , Focalización Isoeléctrica , Microscopía Fluorescente , Olea/fisiología , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/análisis , Proteínas de Plantas/fisiología , Estrés Fisiológico , Tricomas/química , Tricomas/citología , Tricomas/fisiología
11.
Front Chem ; 6: 3, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29441347

RESUMEN

Pyridine 2,4-dicarboxylic acid is a structural analog of 2-oxoglutarate and is known to inhibit 2-oxoglutare-dependent dioxygenases. The effect of this inhibitor in tomato seedlings grown in MS media supplied with various concentrations of PDCA was investigated, resulting in shorter roots and hypocotyls in a dose-dependent manner. The partial inhibition of growth in roots was more drastic compared to hypocotyls and was attributed to a decrease in the elongation of root and hypocotyl cells. Concentrations of 100 and 250 µM of PDCA decreased hydroxyproline content in roots while only the 250 µM treatment reduced the hydroxyproline content in shoots. Seedlings treated with 100 µM PDCA exhibited enhanced growth of hypocotyl and cotyledon cells and higher hydroxyproline content resulting in cotyledons with greater surface area. However, no alterations in hypocotyl length were observed. Prolyl 4 hydroxylases (P4Hs) are involved in the O-glycosylation of AGPs and were also highly expressed during seedling growth. Moreover PDCA induced a decrease in the accumulation of HRGPs and particularly in AGPs-bound epitopes in a dose dependent-manner while more drastic reduction were observed in roots compared to shoots. In addition, bulged root epidermal cells were observed at the high concentration of 250 µM which is characteristic of root tissues with glycosylation defects. These results indicate that PDCA induced pleiotropic effects during seedling growth while further studies are required to better investigate the physiological significance of this 2-oxoglutarate analog. This pharmacological approach might be used as a tool to better understand the physiological significance of HRGPs and probably P4Hs in various growth and developmental programs in plants.

12.
Plant Methods ; 13: 111, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29238398

RESUMEN

BACKGROUND: The morphological analysis of olive leaves, fruits and endocarps may represent an efficient tool for the characterization and discrimination of cultivars and the establishment of relationships among them. In recent years, much attention has been focused on the application of molecular markers, due to their high diagnostic efficiency and independence from environmental and phenological variables. RESULTS: In this study, we present a semi-automatic methodology of detecting various morphological parameters. With the aid of computing and image analysis tools, we created semi-automatic algorithms applying intuitive mathematical descriptors that quantify many fruit, leaf and endocarp morphological features. In particular, we examined quantitative and qualitative characters such as size, shape, symmetry, contour roughness and presence of additional structures such as nipple, petiole, endocarp surface roughness, etc.. CONCLUSION: We illustrate the performance and the applicability of our approach on Greek olive cultivars; on sets of images from fruits, leaves and endocarps. In addition, the proposed methodology was also applied for the description of other crop species morphologies such as tomato, grapevine and pear. This allows us to describe crop morphologies efficiently and robustly in a semi-automated way.

13.
Front Plant Sci ; 7: 1656, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27899927

RESUMEN

The term vitamin E refers to a group of eight lipophilic compounds known as tocochromanols. The tocochromanols are divided into two groups, that is, tocopherols and tocotrienols, with four forms each, namely α-, ß-, γ-, and δ-. In order to explore the temporal biosynthesis of tocochromanols in olive (Olea europaea cv. 'Koroneiki') fruit during on-tree development and ripening over successive growing years, a combined array of analytical, molecular, bioinformatic, immunoblotting, and antioxidant techniques were employed. Fruits were harvested at eight successive developmental stages [10-30 weeks after flowering (WAF)], over three consecutive years. Intriguingly, climatic conditions affected relative transcription levels of vitamin E biosynthetic enzymes; a general suppression to induction pattern (excluding VTE5) was monitored moving from the 1st to the 3rd growing year, probably correlated to decreasing rainfall levels and higher temperature, particularly at the fruit ripening stage. A gradual diminution of VTE5 protein content was detected during the fruit development of each year, with a marked decrease occurring after 16 WAF. Alpha-tocopherol was the most abundant metabolite with an average percentage of 96.82 ± 0.23%, 91.13 ± 0.95%, and 88.53 ± 0.96% (during the 1st, 2nd, and 3rd year, respectively) of total vitamin E content in 10-30 WAF. The concentrations of α-tocopherol revealed a generally declining pattern, both during the on-tree ripening of the olive fruit and across the 3 years, accompanied by a parallel decline of the total antioxidant capacity of the drupe. Contrarily, all other tocochromanols demonstrated an inverse pattern with lowest levels being recorded during the 1st year. It is likely that, in a defense attempt against water deficit conditions and increased air temperature, transcription of genes involved in vitamin E biosynthesis (excluding VTE5) is up-regulated in olive fruit, probably leading to the blocking/deactivating of the pathway through a negative feedback regulatory mechanism.

14.
Front Plant Sci ; 7: 1234, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27625653

RESUMEN

Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

15.
Electrophoresis ; 37(13): 1881-90, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26864388

RESUMEN

Authentication and traceability of extra virgin olive oil is a challenging research task due to the complexity of fraudulent practices. In this context, the monovarietal olive oils of Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) require new tests and cutting edge analytical technologies to detect mislabeling and misleading origin. Toward this direction, DNA-based technologies could serve as a complementary to the analytical techniques assay. Single nucleotide polymorphisms are ideal molecular markers since they require short PCR analytical targets which are a prerequisite for forensic applications in olive oil sector. In the present study, a small number of polymorphic SNPs were used with an SNP-based PCR-RFLP capillary electrophoresis platform to discriminate six out of 13 monovarietal olive oils of Mediterranean origin from three different countries, Greece, Tunisia, and Lebanon. Moreover, the high sensitivity of capillary electrophoresis in combination with the DNA extraction protocol lowered the limit of detection to 10% in an admixture of Tsounati in a Koroneiki olive oil matrix.


Asunto(s)
Electroforesis Capilar/métodos , Aceite de Oliva/química , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción , Polimorfismo de Nucleótido Simple , Límite de Detección , Región Mediterránea
16.
Front Plant Sci ; 6: 871, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26557125

RESUMEN

The aim of this work was to generate a high resolution temporal mapping of the biosynthetic pathway of vitamin E in olive fruit (Olea europaea cv. "Koroneiki") during 17 successive on-tree developmental stages. Fruit material was collected from the middle of June until the end of January, corresponding to 6-38 weeks after flowering (WAF). Results revealed a variable gene regulation pattern among 6-38 WAF studied and more pronounced levels of differential regulation of gene expression for the first and intermediate genes in the biosynthetic pathway (VTE5, geranylgeranyl reductase, HPPD, VTE2, HGGT and VTE3) compared with the downstream components of the pathway (VTE1 and VTE4). Notably, expression of HGGT and VTE2 genes were significantly suppressed throughout the developmental stages examined. Metabolite analysis indicated that the first and intermediate stages of development (6-22 WAF) have higher concentrations of tocochromanols compared with the last on-tree stages (starting from 24 WAF onwards). The concentration of α-tocopherol (16.15 ± 0.60-32.45 ± 0.54 mg/100 g F.W.) were substantially greater (up to 100-fold) than those of ß-, γ-, and δ-tocopherols (0.13 ± 0.01-0.25 ± 0.03 mg/100 g F.W., 0.13 ± 0.01-0.33 ± 0.04 mg/100 g F.W., 0.14 ± 0.01-0.28 ± 0.01 mg/100 g F.W., respectively). In regard with tocotrienol content, only γ-tocotrienol was detected. Overall, olive fruits (cv. "Koroneiki") exhibited higher concentrations of vitamin E until 22 WAF as compared with later WAF, concomitant with the expression profile of phytol kinase (VTE5), which could be used as a marker gene due to its importance in the biosynthesis of vitamin E. To the best of our knowledge, this is the first study that explores the complete biosynthetic pathway of vitamin E in a fruit tree crop of great horticultural importance such as olive, linking molecular gene expression analysis with tocochromanol content.

17.
PLoS One ; 10(11): e0143000, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26576008

RESUMEN

Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Olea/genética , Salinidad , Transcriptoma/genética , Secuencia de Bases , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Biblioteca de Genes , Ontología de Genes , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Anotación de Secuencia Molecular , Olea/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos
18.
J Agric Food Chem ; 63(12): 3121-8, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25754746

RESUMEN

Olive oil cultivar verification is of primary importance for the competitiveness of the product and the protection of consumers and producers from fraudulence. Single-nucleotide polymorphisms (SNPs) have emerged as excellent DNA markers for authenticity testing. This paper reports the first multiplex SNP genotyping assay for olive oil cultivar identification that is performed on a suspension of fluorescence-encoded microspheres. Up to 100 sets of microspheres, with unique "fluorescence signatures", are available. Allele discrimination was accomplished by primer extension reaction. The reaction products were captured via hybridization on the microspheres and analyzed, within seconds, by a flow cytometer. The "fluorescence signature" of each microsphere is assigned to a specific allele, whereas the signal from a reporter fluorophore denotes the presence of the allele. As a model, a panel of three SNPs was chosen that enabled identification of five common Greek olive cultivars (Adramytini, Chondrolia Chalkidikis, Kalamon, Koroneiki, and Valanolia).


Asunto(s)
Dermatoglifia del ADN/métodos , Olea/genética , Aceites de Plantas/química , Polimorfismo de Nucleótido Simple , Dermatoglifia del ADN/instrumentación , ADN de Plantas/química , ADN de Plantas/genética , Análisis Discriminante , Fluorescencia , Genotipo , Microesferas , Olea/química , Olea/clasificación , Aceite de Oliva
19.
BMC Genomics ; 15: 554, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24993183

RESUMEN

BACKGROUND: The petal senescence of ethylene insensitive species has not been investigated thoroughly while little is known about the temporal and tissue specific expression patterns of transcription factors (TFs) in this developmental process. Even less is known on flower senescence of the ornamental pot plant Gardenia jasminoides, a non climacteric flower with significant commercial value. RESULTS: We initiated a de novo transcriptome study to investigate the petal senescence in four developmental stages of cut gardenia flowers considering that the visible symptoms of senescence appear within 4 days of flower opening. De novo assembly of transcriptome sequencing resulted in 102,263 contigs with mean length of 360 nucleotides that generated 57,503 unigenes. These were further clustered into 20,970 clusters and 36,533 singletons. The comparison of the consecutive developmental stages resulted in 180 common, differentially expressed unigenes. A large number of Simple Sequence Repeats were also identified comprising a large number of dinucleotides and trinucleotides. The prevailing families of differentially expressed TFs comprise the AP2/EREBP, WRKY and the bHLH. There are 81 differentially expressed TFs when the symptoms of flower senescence become visible with the most prevailing being the WRKY family with 19 unigenes. No other WRKY TFs had been identified up to now in petal senescence of ethylene insensitive species. A large number of differentially expressed genes were identified at the initiation of visible symptoms of senescence compared to the open flower stage indicating a significant shift in the expression profiles which might be coordinated by up-regulated and/or down-regulated TFs. The expression of 16 genes that belong to the TF families of WRKY, bHLH and the ethylene sensing pathway was validated using qRT--PCR. CONCLUSION: This de novo transcriptome analysis resulted in the identification of TFs with specific temporal expression patterns such as two WRKYs and one bHLH, which might play the role of senescence progression regulators. Further research is required to investigate their role in gardenia flowers in order to develop tools to delay petal senescence.


Asunto(s)
Gardenia/genética , Genes de Plantas , Análisis por Conglomerados , Mapeo Contig , Etilenos/química , Etilenos/metabolismo , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Redes y Vías Metabólicas/genética , Repeticiones de Microsatélite/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Plant Mol Biol ; 85(4-5): 459-71, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24803411

RESUMEN

Proline hydroxylation is a major posttranslational modification of hydroxyproline-rich glycoproteins (HRGPs) that is catalyzed by prolyl 4-hydroxylases (P4Hs). HRGPs such as arabinogalactan proteins (AGPs) and extensios play significant roles on cell wall structure and function and their implication in cell division and expansion has been reported. We used tobacco rattle virus (TRV)-based virus induced gene silencing to investigate the role of three tomato P4Hs, out of ten present in the tomato genome, in growth and development. Eight-days old tomato seedlings were infected with the appropriate TRV vectors and plants were allowed to grow under standard conditions for 6 weeks. Lower P4H mRNA levels were associated with lower hydroxyproline content in root and shoot tissues indicating successful gene silencing. P4H-silenced plants had longer roots and shoots and larger leaves. The increased leaf area can be attributed to increased cell division as indicated by the higher leaf epidermal cell number in SlP4H1- and SlP4H9-silenced plants. In contrast, SlP4H7-silenced plants had larger leaves due to enhanced cell expansion. Western blot analysis revealed that silencing of SlP4H7 and SlP4H9 was associated with reduced levels of JIM8-bound AGP and JIM11-bound extensin epitopes, while silencing of SlP4H1 reduced only the levels of AGP proteins. Collectively these results show that P4Hs have significant and distinct roles in cell division and expansion of tomato leaves.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Silenciador del Gen , Oxigenasas de Función Mixta/clasificación , Oxigenasas de Función Mixta/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Secuencia de Aminoácidos , Regulación Enzimológica de la Expresión Génica/fisiología , Vectores Genéticos , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/virología , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Hojas de la Planta/ultraestructura , Proteínas de Plantas/genética , Subunidades de Proteína , Virus ARN/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA