Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 590(7846): 401-404, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33597757

RESUMEN

Coherent control of quantum dynamics is key to a multitude of fundamental studies and applications1. In the visible or longer-wavelength domains, near-resonant light fields have become the primary tool with which to control electron dynamics2. Recently, coherent control in the extreme-ultraviolet range was demonstrated3, with a few-attosecond temporal resolution of the phase control. At hard-X-ray energies (above 5-10 kiloelectronvolts), Mössbauer nuclei feature narrow nuclear resonances due to their recoilless absorption and emission of light, and spectroscopy of these resonances is widely used to study the magnetic, structural and dynamical properties of matter4,5. It has been shown that the power and scope of Mössbauer spectroscopy can be greatly improved using various control techniques6-16. However, coherent control of atomic nuclei using suitably shaped near-resonant X-ray fields remains an open challenge. Here we demonstrate such control, and use the tunable phase between two X-ray pulses to switch the nuclear exciton dynamics between coherent enhanced excitation and coherent enhanced emission. We present a method of shaping single pulses delivered by state-of-the-art X-ray facilities into tunable double pulses, and demonstrate a temporal stability of the phase control on the few-zeptosecond timescale. Our results unlock coherent optical control for nuclei, and pave the way for nuclear Ramsey spectroscopy17 and spin-echo-like techniques, which should not only advance nuclear quantum optics18, but also help to realize X-ray clocks and frequency standards19. In the long term, we envision time-resolved studies of nuclear out-of-equilibrium dynamics, which is a long-standing challenge in Mössbauer science20.

2.
Phys Rev Lett ; 123(15): 153902, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31702302

RESUMEN

We introduce an analytical phase-reconstruction principle that retrieves atomic scale motion via time-domain interferometry. The approach is based on a resonant interaction with high-frequency light and does not require temporal resolution on the time scale of the resonance period. It is thus applicable to hard x rays and γ rays for measurements of extremely small spatial displacements or relative-frequency changes. Here, it is applied to retrieve the temporal phase of a 14.4 keV emission line of an ^{57}Fe sample, which corresponds to a spatial translation of this sample. The small wavelength of this transition (λ=0.86 Å) allows for determining the motion of the emitter on sub-Ångström length and nanosecond timescales.

3.
J Chem Phys ; 147(12): 124308, 2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28964030

RESUMEN

We have studied strong-field enhanced dissociative ionization of D2O in 40 fs, 800 nm laser pulses with focused intensities of <1-3 × 1015W/cm2 by resolving the charged fragment momenta with respect to the laser polarization. We that observe dication dissociation into OD+/D+ dominates when the polarization is out of the plane of the molecule, whereas trication dissociation into O+/D+/D+ is strongly dominant when the polarization is aligned along the D-D axis. Dication dissociation into O/D+/D+ and O+/D2+ is not seen nor is there any significant fragmentation into multiple ions when the laser is polarized along the C2v symmetry axis of the molecule. Even below the saturation intensity for OD+/D+, the O+/D+/D+ channel has higher yield. By analyzing how the laser field is oriented within the molecular frame for both channels, we show that enhanced ionization is driving the triply charged three body breakup but is not active for the doubly charged two body breakup. We conclude that laser-induced distortion of the molecular potential suppresses multiple ionization along the C2v axis but enhances ionization along the D-D direction.

4.
J Chem Phys ; 145(14): 144304, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27782506

RESUMEN

Conical intersections (CIs) between molecular potential energy surfaces with non-vanishing non-adiabatic couplings generally occur in any molecule consisting of at least three atoms. They play a fundamental role in describing the molecular dynamics beyond the Born-Oppenheimer approximation and have been used to understand a large variety of effects, from photofragmentation and isomerization to more exotic applications such as exciton fission in semiconductors. However, few studies have used the features of a CI as a tool for coherent control. Here we demonstrate two modes of control around a conical intersection. The first uses a continuous light field to control the population on the two intersecting electronic states in the vicinity of a CI. The second uses a pulsed light field to control wavepackets that are subjected to the geometric phase shift in transit around a CI. This second technique is likely to be useful for studying the role of nuclear dynamics in electronic coherence phenomena.

5.
Opt Lett ; 41(4): 709-12, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26872169

RESUMEN

Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules.

6.
Opt Lett ; 40(15): 3464-7, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26258333

RESUMEN

Attosecond transient absorption spectroscopy has thus far been lacking the capability to simultaneously characterize the intense laser pulses at work within a time-resolved quantum-dynamics experiment. However, precise knowledge of these pulses is key to extracting quantitative information in strong-field highly nonlinear light-matter interactions. Here, we introduce and experimentally demonstrate an ultrafast metrology tool based on the time-delay-dependent phase shift imprinted on a strong-field-driven resonance. Since we analyze the signature of the laser pulse interacting with the absorbing spectroscopy target, the laser pulse duration and intensity are determined in situ. As we also show, this approach allows for the quantification of time-dependent bound-state dynamics in one and the same experiment. In the future, such experimental data will facilitate more precise tests of strong-field dynamics theories.

7.
Nature ; 516(7531): 374-8, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25519135

RESUMEN

The concerted motion of two or more bound electrons governs atomic and molecular non-equilibrium processes including chemical reactions, and hence there is much interest in developing a detailed understanding of such electron dynamics in the quantum regime. However, there is no exact solution for the quantum three-body problem, and as a result even the minimal system of two active electrons and a nucleus is analytically intractable. This makes experimental measurements of the dynamics of two bound and correlated electrons, as found in the helium atom, an attractive prospect. However, although the motion of single active electrons and holes has been observed with attosecond time resolution, comparable experiments on two-electron motion have so far remained out of reach. Here we show that a correlated two-electron wave packet can be reconstructed from a 1.2-femtosecond quantum beat among low-lying doubly excited states in helium. The beat appears in attosecond transient-absorption spectra measured with unprecedentedly high spectral resolution and in the presence of an intensity-tunable visible laser field. We tune the coupling between the two low-lying quantum states by adjusting the visible laser intensity, and use the Fano resonance as a phase-sensitive quantum interferometer to achieve coherent control of the two correlated electrons. Given the excellent agreement with large-scale quantum-mechanical calculations for the helium atom, we anticipate that multidimensional spectroscopy experiments of the type we report here will provide benchmark data for testing fundamental few-body quantum dynamics theory in more complex systems. They might also provide a route to the site-specific measurement and control of metastable electronic transition states that are at the heart of fundamental chemical reactions.

8.
Phys Rev Lett ; 112(10): 103001, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24679285

RESUMEN

Fano line shapes observed in absorption spectra encode information on the amplitude and phase of the optical dipole response. A change in the Fano line shape, e.g., by interaction with short-pulsed laser fields, allows us to extract dynamical modifications of the amplitude and phase of the coupled excited quantum states. We introduce and apply this physical mechanism to near-resonantly coupled doubly excited states in helium. This general approach provides a physical understanding of the laser-induced spectral shift of absorption-line maxima on a sub-laser-cycle time scale as they are ubiquitously observed in attosecond transient-absorption measurements.

9.
Science ; 340(6133): 716-20, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23661754

RESUMEN

Symmetric Lorentzian and asymmetric Fano line shapes are fundamental spectroscopic signatures that quantify the structural and dynamical properties of nuclei, atoms, molecules, and solids. This study introduces a universal temporal-phase formalism, mapping the Fano asymmetry parameter q to a phase φ of the time-dependent dipole response function. The formalism is confirmed experimentally by laser-transforming Fano absorption lines of autoionizing helium into Lorentzian lines after attosecond-pulsed excitation. We also demonstrate the inverse, the transformation of a naturally Lorentzian line into a Fano profile. A further application of this formalism uses quantum-phase control to amplify extreme-ultraviolet light resonantly interacting with He atoms. The quantum phase of excited states and its response to interactions can thus be extracted from line-shape analysis, with applications in many branches of spectroscopy.

10.
Phys Rev Lett ; 108(9): 098302, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22463673

RESUMEN

Time-resolved measurements of quantum dynamics are based on the availability of controlled events that are shorter than the typical evolution time scale of the processes to be observed. Here we introduce the concept of noise-enhanced pump-probe spectroscopy, allowing the measurement of dynamics significantly shorter than the average pulse duration by exploiting randomly varying, partially coherent light fields consisting of bunched colored noise. These fields are shown to be superior by more than a factor of 10 to frequency-stabilized fields, with important implications for time-resolved experiments at x-ray free-electron lasers and, in general, for measurements at the frontiers of temporal resolution (e.g., attosecond spectroscopy). As an example application, the concept is used to explain the recent experimental observation of vibrational wave-packet motion in D(2)(+) on time scales shorter than the average pulse duration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...