Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 628: 122271, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36220591

RESUMEN

Application of drugs on skin with compromised barrier can significantly alter permeation of drugs with the possibility of increased adverse side effects or even toxicity. In this study, we tested in vitro delivery of diclofenac sodium from marketed brand and generic formulations across normal and compromised skin using microneedles and iontophoresis, alone and in combination. Ten tape strips on dermatomed human skin were used to create a compromised skin model, as demonstrated by changes in skin resistance and transepidermal water loss. Histology studies further confirmed creation of a compromised skin barrier. There was no significant difference between brand and generic formulations for delivery of diclofenac sodium into and across normal and compromised skin. Compromised skin showed higher total delivery (µg/sq.cm) of diclofenac sodium for all groups - microneedles (brand: 79.45 ± 8.81, generic: 92.15 ± 8.63), iontophoresis (brand: 233.13 ± 8.32, generic: 242.07 ± 11.17), combination (brand: 186.88 ± 6.76, generic: 193.8 ± 5.69) as compared to intact normal skin for same groups, microneedles (brand: 21.83 ± 1.96, generic: 20.38 ± 0.91), iontophoresis (brand: 149.78 ± 18.43, generic: 145.53 ± 12.61), and combination (brand: 80.97 ± 9.86, generic: 70.76 ± 6.56). These results indicate the effect of barrier integrity on delivery of diclofenac sodium which suggests increased absorption and systemic exposure of the drug across skin with compromised skin barrier.


Asunto(s)
Diclofenaco , Iontoforesis , Humanos , Absorción Cutánea , Administración Cutánea , Piel/metabolismo , Medicamentos Genéricos/farmacología , Sistemas de Liberación de Medicamentos
2.
AAPS PharmSciTech ; 22(4): 150, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33973096

RESUMEN

Suspension-based matrix transdermal delivery systems (TDSs) are specialized systems that maintain a continuous driving force for drug delivery over prolonged wear. The pressure-sensitive adhesive (PSA) is the most critical constituent of such systems. Our study aimed to determine the effect of different mixing methods on the performance of silicone PSA-based suspension TDSs. Lidocaine suspension TDSs were prepared using conventional slow rotary mixing, high-speed homogenization, bead-mill homogenization, vortex shaking, and by an unguator. Resultant TDSs were tested for tack, shear, and peel properties and correlated to coat weight, content uniformity, microstructure, and in vitro permeation across dermatomed human skin. Every mixing method tested caused a significant reduction in peel. However, bead-mill homogenization resulted in significant loss of all adhesive properties tested, while unguator-mixed TDSs retained most properties. Good linear correlation (R2 = 1.000) between the shear properties of the TDSs with the average cumulative amount of lidocaine permeated after 24 h was observed, with no significant difference between percutaneous delivery from slow rotary-mixed systems (1334 ± 59.21 µg/cm2) and unguator-mixed systems (1147 ± 108.3 µg/cm2). However, significantly lower delivery from bead-mill homogenized systems (821.1 ± 28.00 µg/cm2) was noted. While many factors affect TDS performance, careful consideration must also be given to the processing parameters during development as they have been shown to affect the resultant system's therapeutic efficacy. Extensive mixing with bead-mill homogenization demonstrated crystallization of drug, loss in adhesive properties, coat weight, and film thickness, with reduced transdermal delivery of lidocaine from the prepared system.


Asunto(s)
Adhesivos/administración & dosificación , Adhesivos/síntesis química , Sistemas de Liberación de Medicamentos/métodos , Absorción Cutánea/efectos de los fármacos , Parche Transdérmico , Adhesivos/farmacocinética , Administración Cutánea , Anestésicos Locales/administración & dosificación , Anestésicos Locales/síntesis química , Anestésicos Locales/farmacocinética , Humanos , Lidocaína/administración & dosificación , Lidocaína/síntesis química , Lidocaína/farmacocinética , Aceite Mineral/administración & dosificación , Aceite Mineral/síntesis química , Aceite Mineral/farmacocinética , Técnicas de Cultivo de Órganos , Siliconas/metabolismo , Siliconas/farmacología , Absorción Cutánea/fisiología , Suspensiones
3.
Int J Pharm ; 589: 119853, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32898633

RESUMEN

The present study investigated the transdermal delivery of donepezil hydrochloride across dermatomed porcine ear skin using passive and physical enhancement techniques. In vitro permeation studies were performed on Franz diffusion cells. Microneedles were fabricated in the lab using a polymeric blend of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP). The fabricated microneedles were characterized using SEM. Effect of PVA-PVP microneedles and ablative laser (P.L.E.A.S.E) alone, and in combination with anodal iontophoresis on the delivery of donepezil hydrochloride was investigated. Scanning electron microscopy, histology, methylene blue staining, and confocal laser microscopy were used to characterize the microchannels created in the skin. Permeation of donepezil after passive delivery was found to be 26.87 ± 3.97 µg/sq.cm. Microneedles, laser, and iontophoresis significantly increased the permeation to 282.23 ± 8.28 µg/sq.cm, 1562 ± 231.8 µg/sq.cm and 623.4 ± 21.3 µg/sq.cm. Also, a significantly higher permeation was achieved with microneedles and laser in combination with iontophoresis (1000 ± 160.9 µg/sq.cm and 1700.4 ± 189.43 µg/sq.cm respectively). A sharp increase in flux was observed with a combination of skin microporation and iontophoresis, however, the same was not observed for iontophoretic delivery alone. Thus, flux can be successfully tailored with a combination of skin microporation and iontophoresis to suit patient needs.


Asunto(s)
Iontoforesis , Absorción Cutánea , Administración Cutánea , Animales , Donepezilo/metabolismo , Sistemas de Liberación de Medicamentos , Humanos , Agujas , Piel/metabolismo , Porcinos
4.
Artículo en Inglés | MEDLINE | ID: mdl-32684991

RESUMEN

This study evaluated the topical delivery of nordihydroguaretic acid (NDGA), a molecule that can potentially alleviate cutaneous damage caused by exposure to arsenic warfare chemicals. N-acetylcysteine (NAC 0.2% w/v) was added as an antioxidant, preventing the oxidation of NDGA to toxic quinones. A 24 h study was performed to arrive at a minimum concentration of NDGA needed to deliver maximum drug. A solution of 3% w/v delivered the maximum amount of drug at the end of 24 h (37.45 ± 4.32 µg). Short duration studies were carried out to determine the time needed to saturate skin with NDGA. There was no significant difference in the skin concentrations for 24 h and 8 h (14.89 ± 2.36 µg), due to skin saturation. However, there was significant difference in the amount of drug delivered to the epidermis (12.29 ± 1.87 µg) and dermis (2.54 ± 0.56 µg) at the end of 8 h. Solution of NDGA was applied on UV treated skin to assess changes in drug delivery. In vivo studies revealed that 3% NDGA was non-toxic for topical administration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...