RESUMEN
Single exon duplications account for disease in a minority of Duchenne muscular dystrophy patients. Exon skipping in these patients has the potential to be highly therapeutic through restoration of full-length dystrophin expression. We conducted a 48-week open label study of casimersen and golodirsen in 3 subjects with an exon 45 or 53 duplication. Two subjects (aged 18 and 23 years) were non-ambulatory at baseline. Upper limb, pulmonary, and cardiac function appeared stable in the 2 subjects in whom they could be evaluated. Dystrophin expression increased from 0.94â% ±0.59% (mean±SD) of normal to 5.1% ±2.9% by western blot. Percent dystrophin positive fibers also rose from 14% ±17% at baseline to 50% ±42% . Our results provide initial evidence that the use of exon-skipping drugs may increase dystrophin levels in patients with single-exon duplications.
Asunto(s)
Distrofina , Exones , Distrofia Muscular de Duchenne , Adolescente , Humanos , Masculino , Adulto Joven , Distrofina/genética , Duplicación de Gen , Distrofia Muscular de Duchenne/genética , Oligonucleótidos/uso terapéuticoRESUMEN
RATIONALE: Serum amyloid A (SAA) is bound to high-density lipoproteins (HDL) in blood. Although SAA is increased in the blood of patients with asthma, it is not known whether this modifies asthma severity. OBJECTIVE: We sought to define the clinical characteristics of patients with asthma who have high SAA levels and assess whether HDL from SAA-high patients with asthma is proinflammatory. METHODS: SAA levels in serum from subjects with and without asthma were quantified by ELISA. HDLs isolated from subjects with asthma and high SAA levels were used to stimulate human monocytes and were intravenously administered to BALB/c mice. RESULTS: An SAA level greater than or equal to 108.8 µg/mL was defined as the threshold to identify 11% of an asthmatic cohort (n = 146) as being SAA-high. SAA-high patients with asthma were characterized by increased serum C-reactive protein, IL-6, and TNF-α; older age; and an increased prevalence of obesity and severe asthma. HDL isolated from SAA-high patients with asthma (SAA-high HDL) had an increased content of SAA as compared with HDL from SAA-low patients with asthma and induced the secretion of IL-6, IL-1ß, and TNF-α from human monocytes via a formyl peptide receptor 2/ATP/P2X purinoceptor 7 axis. Intravenous administration to mice of SAA-high HDL, but not normal HDL, induced systemic inflammation and amplified allergen-induced neutrophilic airway inflammation and goblet cell metaplasia. CONCLUSIONS: SAA-high patients with asthma are characterized by systemic inflammation, older age, and an increased prevalence of obesity and severe asthma. HDL from SAA-high patients with asthma is proinflammatory and, when intravenously administered to mice, induces systemic inflammation, and amplifies allergen-induced neutrophilic airway inflammation. This suggests that systemic inflammation induced by SAA-high HDL may augment disease severity in asthma.
Asunto(s)
Asma , Lipoproteínas HDL , Humanos , Animales , Ratones , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacología , Proteína Amiloide A Sérica/análisis , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6 , Inflamación/metabolismo , Obesidad , AlérgenosRESUMEN
BACKGROUND: Serum lipoproteins, such as high-density lipoproteins (HDL), may influence disease severity in idiopathic pulmonary fibrosis (IPF). Here, we investigated associations between serum lipids and lipoproteins and clinical end-points in IPF. METHODS: Clinical data and serum lipids were analysed from a discovery cohort (59 IPF subjects, 56 healthy volunteers) and validated using an independent, multicentre cohort (207 IPF subjects) from the Pulmonary Fibrosis Foundation registry. Associations between lipids and clinical end-points (forced vital capacity, 6-min walk distance, gender age physiology (GAP) index, death or lung transplantation) were examined using Pearson's correlation and multivariable analyses. RESULTS: Serum concentrations of small HDL particles measured using nuclear magnetic resonance spectroscopy (S-HDLPNMR) correlated negatively with the GAP index in the discovery cohort of IPF subjects. The negative correlation of S-HDLPNMR with GAP index was confirmed in the validation cohort of IPF subjects. Higher levels of S-HDLPNMR were associated with lower odds of death or its competing outcome, lung transplantation (OR 0.9 for each 1-µmol·L-1 increase in S-HDLPNMR, p<0.05), at 1, 2 and 3â years from study entry in a combined cohort of all IPF subjects. CONCLUSIONS: Higher serum levels of S-HDLPNMR are negatively correlated with the GAP index, as well as with lower observed mortality or lung transplantation in IPF subjects. These findings support the hypothesis that S-HDLPNMR may modify mortality risk in patients with IPF.
Asunto(s)
Fibrosis Pulmonar Idiopática , Trasplante de Pulmón , Humanos , Índice de Severidad de la Enfermedad , Volumen de Ventilación Pulmonar , Capacidad VitalRESUMEN
The primary function of APOE (apolipoprotein E) is to mediate the transport of cholesterol- and lipid-containing lipoprotein particles into cells by receptor-mediated endocytosis. APOE also has pro- and antiinflammatory effects, which are both context and concentration dependent. For example, Apoe-/- mice exhibit enhanced airway remodeling and hyperreactivity in experimental asthma, whereas increased APOE levels in lung epithelial lining fluid induce IL-1ß secretion from human asthmatic alveolar macrophages. However, APOE-mediated airway epithelial cell inflammatory responses and signaling pathways have not been defined. Here, RNA sequencing of human asthmatic bronchial brushing cells stimulated with APOE identified increased expression of mRNA transcripts encoding multiple proinflammatory genes, including CXCL5 (C-X-C motif chemokine ligand 5), an epithelial-derived chemokine that promotes neutrophil activation and chemotaxis. We subsequently characterized the APOE signaling pathway that induces CXCL5 secretion by human asthmatic small airway epithelial cells (SAECs). Neutralizing antibodies directed against TLR4 (Toll-like receptor 4), but not TLR2, attenuated APOE-mediated CXCL5 secretion by human asthmatic SAECs. Inhibition of TAK1 (transforming growth factor-ß-activated kinase 1), IκKß (inhibitor of nuclear factor κ B kinase subunit ß), TPL2 (tumor progression locus 2), and JNK (c-Jun N-terminal kinase), but not p38 MAPK (mitogen-activated protein kinase) or MEK1/2 (MAPK kinase 1/2), attenuated APOE-mediated CXCL5 secretion. The roles of TAK1, IκKß, TPL2, and JNK in APOE-mediated CXCL5 secretion were verified by RNA interference. Furthermore, RNA interference showed that after APOE stimulation, both NF-κB p65 and TPL2 were downstream of TAK1 and IκKß, whereas JNK was downstream of TPL2. In summary, elevated levels of APOE in the airway may activate a TLR4/TAK1/IκKß/NF-κB/TPL2/JNK signaling pathway that induces CXCL5 secretion by human asthmatic SAECs. These findings identify new roles for TLR4 and TPL2 in APOE-mediated proinflammatory responses in asthma.
Asunto(s)
Apolipoproteínas E/metabolismo , Asma/metabolismo , Quimiocina CXCL5/metabolismo , Células Epiteliales/metabolismo , Sistema Respiratorio/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo , Quimiocinas/metabolismo , Humanos , Inflamación/metabolismo , Neutrófilos/metabolismo , ARN Mensajero/metabolismoRESUMEN
BACKGROUND: House dust mite (HDM)-challenged Apoe-/- mice display enhanced airway hyperreactivity and mucous cell metaplasia. OBJECTIVE: We sought to characterize the pathways that induce apolipoprotein E (APOE) expression by bronchoalveolar lavage fluid (BALF) macrophages from asthmatic subjects and identify how APOE regulates IL-1ß secretion. METHODS: Macrophages were isolated from asthmatic BALF and derived from THP-1 cells and human monocytes. RESULTS: HDM-derived cysteine and serine proteases induced APOE secretion from BALF macrophages through protease-activated receptor 2. APOE at concentrations of less than 2.5 nmol/L, which are similar to levels found in epithelial lining fluid from healthy adults, did not induce IL-1ß release from BALF macrophages. In contrast, APOE at concentrations of 25 nmol/L or greater induced nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein (NLRP) 3 and pro-IL-1ß expression by BALF macrophages, as well as the caspase-1-mediated generation of mature IL-1ß secreted from cells. HDM acted synergistically with APOE to both prime and activate the NLRP3 inflammasome. In a murine model of neutrophilic airway inflammation induced by HDM and polyinosinic-polycytidylic acid, APOE reached a concentration of 32 nmol/L in epithelial lining fluid, with associated increases in BALF IL-1ß levels. APOE-dependent NLRP3 inflammasome activation in macrophages was primarily mediated through a potassium efflux-dependent mechanism. CONCLUSION: APOE can function as an endogenous, concentration-dependent pulmonary danger signal that primes and activates the NLPR3 inflammasome in BALF macrophages from asthmatic subjects to secrete IL-1ß. This might represent a mechanism through which APOE amplifies pulmonary inflammatory responses when concentrations in the lung are increased to greater than normal levels, which can occur during viral exacerbations of HDM-induced asthma characterized by neutrophilic airway inflammation.
Asunto(s)
Apolipoproteínas E/inmunología , Asma/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Inflamasomas/inmunología , Interleucina-1beta/inmunología , Macrófagos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Transducción de Señal/inmunología , Animales , Asma/patología , Femenino , Humanos , Macrófagos/patología , Masculino , Ratones , Células THP-1RESUMEN
A fasting mimetic diet blunts inflammation, and intermittent fasting has shown ameliorative effects in obese asthmatics. To examine whether canonical inflammatory pathways linked with asthma are modulated by fasting, we designed a pilot study in mild asthmatic subjects to assess the effect of fasting on the NLRP3 inflammasome, Th2 cell activation, and airway epithelial cell cytokine production. Subjects with documented reversible airway obstruction and stable mild asthma were recruited into this study in which pulmonary function testing (PFT) and PBMCextraction was performed 24 h after fasting, with repeated PFT testing and blood draw 2.5 h after refeeding. PFTs were not changed by a prolonged fast. However, steroid-naive mild asthmatics showed fasting-dependent blunting of the NLRP3 inflammasome. Furthermore, PBMCs from these fasted asthmatics cocultured with human epithelial cells resulted in blunting of house dust mite-induced epithelial cell cytokine production and reduced CD4+ T cell Th2 activation compared with refed samples. This pilot study shows that prolonged fasting blunts the NLRP3 inflammasome and Th2 cell activation in steroid-naive asthmatics as well as diminishes airway epithelial cell cytokine production. This identifies a potential role for nutrient level-dependent regulation of inflammation in asthma. Our findings support the evaluation of this concept in a larger study as well as the potential development of caloric restriction interventions for the treatment of asthma.
Asunto(s)
Asma/inmunología , Ayuno , Inmunomodulación , Activación de Linfocitos , Células Th2/inmunología , Adulto , Asma/patología , Células Cultivadas , Citocinas/inmunología , Femenino , Humanos , Inflamasomas/inmunología , Masculino , Persona de Mediana Edad , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proyectos Piloto , Esteroides , Células Th2/patologíaRESUMEN
BACKGROUND: Low-density lipoprotein receptor-related protein 1 (LRP-1) is a scavenger receptor that regulates adaptive immunity and inflammation. LRP-1 is not known to modulate the pathogenesis of allergic asthma. OBJECTIVE: We sought to assess whether LRP-1 expression by dendritic cells (DCs) modulates adaptive immune responses in patients with house dust mite (HDM)-induced airways disease. METHODS: LRP-1 expression on peripheral blood DCs was quantified by using flow cytometry. The role of LRP-1 in modulating HDM-induced airways disease was assessed in mice with deletion of LRP-1 in CD11c+ cells (Lrp1fl/fl; CD11c-Cre) and by adoptive transfer of HDM-pulsed CD11b+ DCs from Lrp1fl/fl; CD11c-Cre mice to wild-type (WT) mice. RESULTS: Human peripheral blood myeloid DC subsets from patients with eosinophilic asthma have lower LRP-1 expression than cells from healthy nonasthmatic subjects. Similarly, LRP-1 expression by CD11b+ lung DCs was significantly reduced in HDM-challenged WT mice. HDM-challenged Lrp1fl/fl; CD11c-Cre mice have a phenotype of increased eosinophilic airway inflammation, allergic sensitization, TH2 cytokine production, and mucous cell metaplasia. The adoptive transfer of HDM-pulsed LRP-1-deficient CD11b+ DCs into WT mice generated a similar phenotype of enhanced eosinophilic inflammation and allergic sensitization. Furthermore, CD11b+ DCs in the lungs of Lrp1fl/fl; CD11c-Cre mice have an increased ability to take up HDM antigen, whereas bone marrow-derived DCs display enhanced antigen presentation capabilities. CONCLUSION: This identifies a novel role for LRP-1 as a negative regulator of DC-mediated adaptive immune responses in the setting of HDM-induced eosinophilic airway inflammation. Furthermore, the reduced LRP-1 expression by circulating myeloid DCs in patients with eosinophilic asthma suggests a possible role for LRP-1 in modulating type 2-high asthma.
Asunto(s)
Asma/inmunología , Células Dendríticas/inmunología , Dermatophagoides pteronyssinus/inmunología , Eosinofilia/inmunología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/inmunología , Inmunidad Adaptativa , Adulto , Alérgenos/inmunología , Animales , Antígenos Dermatofagoides/inmunología , Asma/sangre , Asma/fisiopatología , Líquido del Lavado Bronquioalveolar/citología , Eosinofilia/sangre , Eosinofilia/fisiopatología , Femenino , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Masculino , Ratones Transgénicos , Persona de Mediana EdadRESUMEN
Blood eosinophil counts and serum periostin levels are biomarkers of type 2 inflammation. Although serum levels of HDL and apoA-I have been associated with less severe airflow obstruction in asthma, it is not known whether serum lipids or lipoprotein particles are correlated with type 2 inflammation in asthmatics. Here, we assessed whether serum lipids and lipoproteins correlated with blood eosinophil counts or serum periostin levels in 165 atopic asthmatics and 163 nonasthmatic subjects with and without atopy. Serum lipids and lipoproteins were quantified using standard laboratory assays and NMR spectroscopy. Absolute blood eosinophils were quantified by complete blood counts. Periostin levels were measured using the Elecsys® periostin assay. In atopic asthmatics, blood eosinophils negatively correlated with serum HDL cholesterol and total HDL particles measured by NMR spectroscopy (HDLNMR). Serum periostin levels negatively correlated with total HDLNMR In contrast, blood eosinophil counts positively correlated with serum triglyceride levels. This study demonstrates for the first time that HDL particles were negatively correlated, whereas serum triglycerides were positively correlated, with blood eosinophils in atopic asthmatics. This supports the concept that serum levels of HDL and triglycerides may be linked to systemic type 2 inflammation in atopic asthma.
Asunto(s)
Asma/sangre , Lipoproteínas HDL/sangre , Adulto , Asma/inmunología , Biomarcadores/sangre , Estudios de Casos y Controles , Moléculas de Adhesión Celular/sangre , Eosinófilos/metabolismo , Femenino , Humanos , Inflamación/sangre , MasculinoRESUMEN
BACKGROUND: This single center, double-blinded, cross-over, placebo controlled clinical trial investigated the effect of oral α-cyclodextrin (α-CD), a soluble dietary fiber, on blood lipid and lipoprotein levels in healthy human subjects. α-CD, a cyclical polymer containing 6 glucose subunits, is currently sold as an over the counter food supplement and is also a common additive in many foods. α-CD forms a hydrophobic central cavity that binds lipids and has been shown in animal studies and in previous clinical trials to alter plasma lipid levels. METHODS: We screened for healthy subjects, males and females, between ages 18 to 75. Out of total 103 subjects interviewed, 75 subjects completed the study. Qualified individuals in each gender group were randomized into two groups in terms of which treatment arm they received first (placebo vs. α-CD, receiving 6 grams P.O. a day, for 12-14 weeks with a 7 day wash out between arms). The primary outcome variable, plasma total cholesterol, as well as other tests related to lipids and lipoprotein and glucose metabolism, were measured at baseline and at the end of each arm of the study. RESULTS: α-CD was well tolerated; no serious adverse events related to α-CD were observed. Approximately 8 % of the subjects on α-CD complained of minor gastrointestinal symptoms versus 3 % on placebo (p = 0.2). Small-LDL particle number decreased 10 % (p < 0.045) for subjects on α-CD versus placebo. Fasting plasma glucose (1.6 %, p < 0.05) and Insulin resistance index (11 %, p < 0.04) were also decreased when on α-CD versus placebo. CONCLUSION: α-CD treatment appears to be safe and well tolerated in healthy individuals and showed a modest reduction in small LDL particles, and an improvement in glucose related parameters. TRIAL REGISTRATION: NCT01131299.
Asunto(s)
HDL-Colesterol/sangre , LDL-Colesterol/sangre , Fibras de la Dieta/administración & dosificación , Triglicéridos/sangre , alfa-Ciclodextrinas/administración & dosificación , Administración Oral , Adolescente , Adulto , Anciano , Glucemia/metabolismo , Método Doble Ciego , Ayuno , Femenino , Voluntarios Sanos , Humanos , Insulina/sangre , Resistencia a la Insulina/fisiología , Masculino , Persona de Mediana EdadRESUMEN
RATIONALE: Although lipids, apolipoproteins, and lipoprotein particles are important modulators of inflammation, varying relationships exist between these parameters and asthma. OBJECTIVES: To determine whether serum lipids and apolipoproteins correlate with the severity of airflow obstruction in subjects with atopy and asthma. METHODS: Serum samples were obtained from 154 atopic and nonatopic subjects without asthma, and 159 subjects with atopy and asthma. Serum lipid and lipoprotein levels were quantified using standard diagnostic assays and nuclear magnetic resonance (NMR) spectroscopy. Airflow obstruction was assessed by FEV1% predicted. MEASUREMENTS AND MAIN RESULTS: Serum lipid levels correlated with FEV1 only in the subjects with atopy and asthma. Serum levels of high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I (apoA-I) were positively correlated with FEV1 in subjects with atopy and asthma, whereas a negative correlation existed between FEV1 and serum levels of triglycerides, low-density lipoprotein (LDL) cholesterol, apolipoprotein B (apoB), and the apoB/apoA-I ratio. NMR spectroscopy identified a positive correlation between FEV1 and HDLNMR particle size, as well as the concentrations of large HDLNMR particles and total IDLNMR (intermediate-density lipoprotein) particles in subjects with atopy and asthma. In contrast, LDLNMR particle size and concentrations of LDLNMR and VLDLNMR (very-low-density lipoprotein) particles were negatively correlated with FEV1 in subjects with atopy and asthma. CONCLUSIONS: In subjects with atopy and asthma, serum levels of apoA-I and large HDLNMR particles are positively correlated with FEV1, whereas serum triglycerides, LDL cholesterol, and apoB are associated with more severe airflow obstruction. These results may facilitate future studies to assess whether apoA-I and large HDLNMR particles can reduce airflow obstruction and disease severity in asthma.
Asunto(s)
Apolipoproteína A-I/sangre , Asma/sangre , Asma/fisiopatología , HDL-Colesterol/sangre , Volumen Espiratorio Forzado , Hipersensibilidad Inmediata/sangre , Hipersensibilidad Inmediata/fisiopatología , Adulto , Obstrucción de las Vías Aéreas/sangre , Obstrucción de las Vías Aéreas/fisiopatología , Asma/complicaciones , Femenino , Humanos , Hipersensibilidad Inmediata/complicaciones , Masculino , Persona de Mediana EdadRESUMEN
Apolipoprotein E (apoE) is an endogenous negative regulator of airway hyperreactivity (AHR) and mucous cell metaplasia in experimental models of house dust mite (HDM)-induced airway disease. The gene encoding human apoE is polymorphic, with three common alleles (ε2, ε3, and ε4) reflecting single amino acid substitutions at amino acids 112 and 158. The objective of this study was to assess whether the human apoE alleles modify airway responses to repeated nasal HDM challenges. Mice expressing the human apoE ε2 (huApoE2), ε3 (huApoE3), or ε4 (huApoE4) alleles received nasal HDM challenges, and airway responses were compared with mice expressing the endogenous murine apoE gene (muApoE). huApoE3 mice displayed significant reductions in AHR, mucous cell metaplasia, and airway inflammation compared with muApoE mice. The attenuated severity of airway inflammation in huApoE3 mice was associated with reductions in lung mRNA levels of Th2 and Th17 cytokines, as well as chemokines (CCL7, CCL11, CCL24). huApoE4 mice had an intermediate phenotype, with attenuated AHR and IgE production, compared with muApoE mice, whereas airway inflammation and mucous cell metaplasia were not reduced. In contrast, HDM-induced airway responses were not modified in mice expressing the huApoE2 allele. We conclude that the polymorphic huApoE alleles differentially modulate HDM-induced airway disease, which can be stratified, in rank order of increasing disease severity, ε3 < ε4 < ε2. These results raise the possibility that the polymorphic apoE alleles may modify disease severity in human asthma.
Asunto(s)
Alérgenos/inmunología , Antígenos Dermatofagoides/inmunología , Apolipoproteínas E/genética , Asma/genética , Hiperreactividad Bronquial/genética , Alelos , Sustitución de Aminoácidos , Animales , Apolipoproteínas E/metabolismo , Asma/inmunología , Asma/patología , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/patología , Quimiocina CCL11/biosíntesis , Quimiocina CCL24/biosíntesis , Quimiocina CCL7/biosíntesis , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Genotipo , Inmunoglobulina E/biosíntesis , Inflamación/genética , Inflamación/inmunología , Pulmón/inmunología , Pulmón/patología , Metaplasia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Th17/inmunología , Células Th2/inmunologíaRESUMEN
Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-gamma (PPARgamma), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARgamma as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.
Asunto(s)
Exosomas/metabolismo , PPAR gamma/sangre , Proteómica , Suero/metabolismo , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Humanos , Lipoproteínas IDL/sangre , Lipoproteínas VLDL/sangre , Espectrometría de Masas , Análisis por Matrices de ProteínasRESUMEN
Extracellular type I tumor necrosis factor receptors (TNFR1) are generated by two mechanisms, proteolytic cleavage of TNFR1 ectodomains and release of full-length TNFR1 in the membranes of exosome-like vesicles. Here, we assessed whether TNFR1 exosome-like vesicles circulate in human blood. Immunoelectron microscopy of human serum demonstrated TNFR1 exosome-like vesicles, with a diameter of 27-36nm, while Western blots of human plasma showed a 48-kDa TNFR1, consistent with a membrane-associated receptor. Gel filtration chromatography revealed that the 48-kDa TNFR1 in human plasma co-segregated with LDL particles by size, but segregated independently by density, demonstrating that they are distinct from LDL particles. Furthermore, the 48-kDa exosome-associated TNFR1 in human plasma contained a reduced content of N-linked carbohydrates as compared to the 55-kDa membrane-associated TNFR1 from human vascular endothelial cells. Thus, a distinct population of TNFR1 exosome-like vesicles circulate in human plasma and may modulate TNF-mediated inflammation.
Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Lipoproteínas LDL/sangre , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Vesículas Transportadoras/ultraestructura , HumanosRESUMEN
OBJECTIVE: To assess whether tumor necrosis factor (TNF) antagonism can attenuate eosinophilic airway inflammation in patients with mild-to-moderate allergic asthma. DESIGN: Randomized, double-blind, placebo-controlled trial. SETTING: National Institutes of Health (NIH) Clinical Center. PATIENTS: Twenty-six patients with mild-to-moderate allergic asthma, receiving only inhaled beta-2-agonists, who demonstrated both an early and late phase response to inhalational allergen challenge. INTERVENTION: Injection of a soluble TNF receptor (TNFR:Fc, etanercept, Enbrel) or placebo, 25mg subcutaneously, twice weekly for 2 weeks, followed by a bronchoscopic segmental allergen challenge. MEASUREMENTS: The primary outcome measure was whether TNFR:Fc can access the lung and inhibit TNF bioactivity. Secondary outcome measures included pulmonary eosinophilia, Th2-type cytokines, and airway hyperresponsiveness. RESULTS: Anti-TNF therapy was associated with transient hemiplegia in one patient, which resulted in suspension of the study. Data from the 21 participants who completed the study were analyzed. Following treatment, patients receiving anti-TNF therapy had significantly increased TNFR2 levels in epithelial lining fluid (ELF) (P<0.001), consistent with delivery of TNFR:Fc to the lung. TNF antagonism did not attenuate pulmonary eosinophilia and was associated with an increase in ELF IL-4 levels (P=0.033) at 24h following segmental allergen challenge. TNF antagonism was not associated with a change in airway hyperresponsiveness to methacholine. CONCLUSIONS: TNF antagonism may not be effective for preventing allergen-mediated eosinophilic airway inflammation in mild-to-moderate asthmatics. Transient hemiplegia, which may mimic an evolving stroke, may be a potential toxicity of anti-TNF therapy.
Asunto(s)
Alérgenos/inmunología , Asma/tratamiento farmacológico , Inmunoglobulina G/uso terapéutico , Eosinofilia Pulmonar/tratamiento farmacológico , Receptores del Factor de Necrosis Tumoral/uso terapéutico , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Adulto , Obstrucción de las Vías Aéreas/tratamiento farmacológico , Antiinflamatorios no Esteroideos/efectos adversos , Antiinflamatorios no Esteroideos/uso terapéutico , Asma/inmunología , Hiperreactividad Bronquial/tratamiento farmacológico , Líquido del Lavado Bronquioalveolar/citología , Citocinas/biosíntesis , Método Doble Ciego , Etanercept , Femenino , Hemiplejía/inducido químicamente , Humanos , Inmunoglobulina G/efectos adversos , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Células Th2/inmunologíaRESUMEN
TNF-alpha-converting enzyme (TACE, ADAM17) cleaves membrane-associated cytokines and receptors and thereby regulates inflammatory and immune events, as well as lung development and mucin production. For example, the TACE-mediated cleavage of the type II 75-kDa TNF receptor (TNFR2) generates a soluble TNF-binding protein that modulates TNF bioactivity. TACE is synthesized as a latent proenzyme that is retained in an inactive state via an interaction between its prodomain and catalytic domain. Although the formation of an intramolecular bond between a cysteine in the prodomain and a zinc atom in the catalytic site had been thought to mediate this inhibitory activity, it was recently reported that the cysteine-switch motif is not required. Here, we hypothesized that the amino terminus of the TACE prodomain might contribute to the ability of the prodomain to maintain TACE in an inactive state independently of a cysteine-switch mechanism. We synthesized a 37-amino acid peptide corresponding to TACE amino acids 18-54 (N-TACE(18-54)) and assessed whether it possessed TACE inhibitory activity. In an in vitro model assay system, N-TACE(18-54) attenuated TACE-catalyzed cleavage of a TNFR2:Fc substrate. Furthermore, N-TACE(18-54) inhibited constitutive TNFR2 shedding from a human monocytic cell line by 42%. A 19-amino acid, leucine-rich domain, corresponding to TACE amino acids 30-48, demonstrated partial inhibitory activity. In summary, we have identified a subdomain within the amino terminus of the TACE prodomain that attenuates TACE catalytic activity independently of a cysteine-switch mechanism, which provides new insight into the regulation of TACE enzymatic activity.
Asunto(s)
Metaloendopeptidasas/farmacología , Monocitos/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteínas ADAM , Proteína ADAM17 , Catálisis , Dominio Catalítico , Cisteína/metabolismo , Humanos , Estructura Terciaria de Proteína , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Zinc/metabolismoRESUMEN
Soluble tumor necrosis factor receptors (TNFRs) are important modulators of TNF bioactivity. Proteolytic cleavage of the 28-kDa ectodomain of TNFR1 has been recognized as the mechanism by which soluble TNFR is shed. We now describe the release of exosome-like vesicles as a mechanism for the generation of soluble, full-length 55-kDa TNFR1. We found unexpectedly that the predominant form of soluble TNFR1 in human serum and lung epithelial lining fluid is a full-length 55-kDa protein. Furthermore, supernatants from human vascular endothelial cells contain only full-length 55-kDa TNFR1 that can be sedimented by high-speed centrifugation, floated on sucrose gradients at a density of 1.1 g/ml, and associated with vesicles that range in diameter from 20 nm to 50 nm. We conclude that the release of TNFR1 exosome-like vesicles represents a previously unrecognized mechanism by which constitutive production of soluble cytokine receptors may be regulated, independent of ectodomain cleavage by receptor sheddases.
Asunto(s)
Antígenos CD/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Antígenos CD/análisis , Antígenos CD/sangre , Catálisis , Células Endoteliales/química , Epitelio/química , Humanos , Pulmón/química , Microdominios de Membrana/química , Metaloproteasas/fisiología , Receptores del Factor de Necrosis Tumoral/análisis , Receptores del Factor de Necrosis Tumoral/sangre , Receptores Tipo I de Factores de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
The lack of substantive research regarding complementary and alternative medicine (CAM) and its rising use stimulate interest in the ethical obligations that primary care providers face when advising patients about these therapies. Here, we explore how ethical principles relate to decision-making regarding CAM. We also provide a framework for making decisions that involve CAM interventions.