Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38337299

RESUMEN

The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.

2.
J Microbiol Biotechnol ; 33(1): 127-134, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36457186

RESUMEN

Laccase activity is influenced by copper (Cu) as an inducer. In this study, laccase was immobilized on Cu and Cu-magnetic (Cu/Fe2O4) nanoparticles (NPs) to improve enzyme stability and potential applications. The Cu/Fe2O4 NPs functionally activated by 3-aminopropyltriethoxysilane and glutaraldehyde exhibited an immobilization yield and relative activity (RA) of 93.1 and 140%, respectively. Under optimized conditions, Cu/Fe2O4 NPs showed high loading of laccase up to 285 mg/g of support and maximum RA of 140% at a pH 5.0 after 24 h of incubation (4°C). Immobilized laccase, as Cu/Fe2O4-laccase, had a higher optimum pH (4.0) and temperature (45°C) than those of a free enzyme. The pH and temperature profiles were significantly improved through immobilization. Cu/Fe2O4-laccase exhibited 25-fold higher thermal stability at 65°C and retained residual activity of 91.8% after 10 cycles of reuse. The degradation of bisphenols was 3.9-fold higher with Cu/Fe2O4-laccase than that with the free enzyme. To the best of our knowledge, Rhus vernicifera laccase immobilization on Cu or Cu/Fe2O4 NPs has not yet been reported. This investigation revealed that laccase immobilization on Cu/Fe2O4 NPs is desirable for efficient enzyme loading and high relative activity, with remarkable bisphenol A degradation potential.


Asunto(s)
Cobre , Nanopartículas de Magnetita , Enzimas Inmovilizadas/metabolismo , Lacasa/metabolismo , Concentración de Iones de Hidrógeno
3.
Bioresour Technol ; 369: 128427, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36470498

RESUMEN

Biowaste-derived sugars or greenhouse gases, such as methane (CH4) and carbon dioxide (CO2), can be used to generate eco-friendly biofuels, such as hydrogen (H2) or methanol. In the present study, enzyme-based rice straw (RS) hydrolysate was used to produce dark-fermentative (DF) biogas (H2 and CO2), which was subsequently integrated with biogas (CH4 and CO2) derived from anaerobic digestion (AD) to generate methanol via methanotrophs. First, DF of RS hydrolysate yielded 2.82 mol of H2/mol of hexose. Second, the integration of biogas derived from DF and AD in the presence of CH4 vectors yielded 13.8 mmol/L of methanol via methanotrophs. Moreover, under the repeated batch mode, 64.6 mmol/L of methanol was produced. This is the first report on the integration of biogas derived from AD and DF of biowaste to produce biomethanol. These findings may facilitate the development of a sustainable biowaste-based circular economy for producing biofuels.


Asunto(s)
Biocombustibles , Metanol , Fermentación , Anaerobiosis , Dióxido de Carbono , Metano , Reactores Biológicos
4.
Bioresour Technol ; 364: 128032, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36167174

RESUMEN

In this study, various methanotroph co-cultures were designed to enhance methanol production from biogas produced through the anaerobic digestion of wheat straw (WS). Furthermore, whole-cell immobilization was performed using magnetic nanoparticle (MNP)-loaded polymers to develop an efficient bioprocess. The anaerobic digestion of WS by cattle dung yielded 219 L/kg of total solids reduced. Methanol produced was 5.08 and 6.39 mmol/L by pure- and co-cultures from biogas, respectively. The optimization of process parameters enhanced methanol production to 6.82 mmol/L by co-culturing Mithylosinus sporium and Methylocella tundrae. The immobilized co-culture within the MNP-doped polymers exhibited much higher cumulative methanol of up to 70.74 mmol/L than the production of 22.34 mmol/L by free cells after ten cycles of reuse. This study suggests that MNP-doped polymer-based immobilization of methanotrophs is a unique approach for producing renewable fuels from biomass-derived biogas, a greenhouse gas.

5.
Indian J Microbiol ; 62(3): 447-455, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35974908

RESUMEN

The dependency on non-renewable fossil fuels as an energy source has drastically increased global temperatures. Their continuous use poses a great threat to the existing energy reserves. Therefore, the energy sector has taken a turn toward developing eco-friendly, sustainable energy generation by using sustainable lignocellulosic wastes, such as rice straw (RS). For lignocellulosic waste to be utilized as an efficient energy source, it needs to be broken down into less complex forms by pretreatment processes, such as alkaline pretreatment using NaOH. Varied NaOH concentrations (0.5%,1.0%,1.5%,2%) for alkaline pretreatment of RS were used for the holocellulose generation. Amongst the four NaOH concentrations tested, RS-1.5% exhibited higher holocellulose generation of 80.1%, whereas 0.5%, 1 5 and 2% pointed 71.9%, 73.8%, and 78.5% holocellulose generation, respectively. Further, microbial fuel cells (MFCs) were tested for voltage generation by utilizing holocellulose generated from untreated (RS-0%) and mildly alkaline pretreated RS (RS-1.5%) as a feedstock. The MFC voltage and maximum power generation using RS-0% were 194 mV and 167 mW/m2, respectively. With RS-1.5%, the voltage and maximum power generation were 556 mV and 583 mW/m2, respectively. The power density of RS-1.5% was three-fold higher than that of RS-0%. The increase in MFC power generation suggests that alkaline pretreatment plays a crucial role in enhancing the overall performance.

6.
Indian J Microbiol ; 62(2): 312-316, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35462708

RESUMEN

In this study, the inorganic-protein hybrid strategy was employed for immobilization of laccase from Rhus vernicifera (Rvlac) using various metals calcium, cobalt, copper, and zinc (Zn). The efficient synthesis of hybrids for Rvlac immobilization was noted at 4 °C for incubation of 24 h. Among these hybrids, the maximum encapsulation yields (EY) of 90.1% and relative activity (RA) of 225% to free enzyme were recorded for Zn and Rvlac based inorganic-protein hybrids as Zn3(PO4)2-Rvlac. The upper optimum pH, and temperature values were observed of 4.0, and 45 °C after immobilization as compared to 3.5, and 40 °C for the free enzyme, respectively. After encapsulation, Rvlac showed a significant improvement up to 11.4-fold in pH and 5.7-fold in temperature the activity profiles. Free enzyme completely lost its activity at 60 °C after 2 h of incubation, whereas Zn3(PO4)2-Rvlac retained its residual activity of 56.7% under similar conditions. After ten cycles of reusability, Zn3(PO4)2-Rvlac possessed high residual activity of 90.8%. This study showed that the variation in the metal ions for immobilization of Rvlac as inorganic-protein hybrids significantly altered EY and RA. Also, Zn3(PO4)2-Rvlac proved more efficient as compared to free laccase that can be beneficially employed for biotechnological applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01000-5.

7.
Indian J Microbiol ; 61(4): 401-403, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34744195
8.
Indian J Microbiol ; 61(4): 449-457, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34744200

RESUMEN

Harmful effects on living organisms and the environment are on the rise due to a significant increase in greenhouse gas (GHG) emissions through human activities. Therefore, various research initiatives have been carried out in several directions in relation to the utilization of GHGs via physicochemical or biological routes. An environmentally friendly approach to reduce the burden of significant emissions and their harmful effects is the bioconversion of GHGs, including methane (CH4) and carbon dioxide (CO2), into value-added products. Methanotrophs have enormous potential for the efficient biotransformation of CH4 to various bioactive molecules, including biofuels, polyhydroxyalkanoates, and fatty acids. This review highlights the recent developments in methanotroph-based systems for methanol production from GHGs and proposes future perspectives to improve process sustainability via biorefinery approaches.

9.
Indian J Microbiol ; 61(1): 45-54, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33505092

RESUMEN

In the present study, Rhus vernicifera laccase (RvLac) was immobilized through covalent methods on the magnetic nanoparticles. Fe2O3 and Fe3O4 nanoparticles activated by 3-aminopropyltriethoxysilane followed with glutaraldehyde showed maximum immobilization yields and relative activity up to 81.4 and 84.3% at optimum incubation and pH of 18 h and 5.8, respectively. The maximum RvLac loading of 156 mg/g of support was recorded on Fe2O3 nanoparticles. A higher optimum pH and temperature of 4.0 and 45 °C were noted for immobilized enzyme compared to values of 3.5 and 40 °C for free form, respectively. Immobilized RvLac exhibited better relative activity profiles at various pH and temperature ranges. The immobilized enzyme showed up to 16-fold improvement in the thermal stability, when incubated at 60 °C, and retained up to 82.9% of residual activity after ten cycles of reuses. Immobilized RvLac exhibited up to 1.9-fold higher bisphenol A degradation efficiency potential over free enzyme. Previous reports have demonstrated the immobilization of RvLac on non-magnetic supports. This study has demonstrated that immobilization of RvLac on magnetic nanoparticles is very efficient especially for achieving high loading, better pH and temperature profiles, and thermal- and solvents-stability, high reusability, and higher degradation of bisphenol A.

10.
Indian J Microbiol ; 60(4): 420-429, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33012868

RESUMEN

Worldwide, millions of individuals have been affected by the prevailing SARS-CoV-2. Therefore, a robust immune system remains indispensable, as an immunocompromised host status has proven to be fatal. In the absence of any specific antiviral drug/vaccine, COVID-19 related drug repurposing along with various other non-pharmacological measures coupled with lockdown have been employed to combat this infection. In this context, a plant based rich fiber diet, which happens to be consumed by a majority of the Indian population, appears to be advantageous, as it replenishes the host gut microbiota with beneficial microbes thereby leading to a symbiotic association conferring various health benefits to the host including enhanced immunity. Further, implementation of the lockdown which has proven to be a good non-pharmacological measure, seems to have resulted in consumption of home cooked healthy diet, thereby enriching the beneficial microflora in the gut, which might have resulted in better prognosis of COVID-19 patients in India in comparison to that observed in the western countries.

11.
Indian J Microbiol ; 60(3): 263-268, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32647390

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) known as COVID-19 has emerged as a major threat to human existence. COVID-19 seems to have undergone adaptive evolution through an intermediate host, most likely bats. The flu leads to severe pneumonia that causes respiratory and multi-organ failure. The absence of any known treatment procedures, drugs, or vaccines has created panic around the World. The need is to develop rapid testing kits, drugs and vaccines. However, these proposals are time-consuming processes. At present social distancing along with previously known traditional medicines can act as quick and short-term alternatives for treating this viral flu.

12.
Bioresour Technol ; 315: 123791, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32679540

RESUMEN

In this study, chitosan modified with glutaraldehyde (GLA), 3-aminopropyltriethoxysilane (APTES), polyethyleneimine, and APTES followed by GLA (APTES-GLA) as a support material was used to improve methanol production from biogas. Among these support materials, chitosan-APTES-GLA showed the highest increase in immobilization yield and relative efficiency of Methylomicrobium album up to 56.4% and 97.7%, respectively. Maximum cell loading of 236 mg dry cell mass per g-support was observed for M. album., which is 7.7-fold higher than that of chitosan. The immobilized M. album maintained a 23.9-fold higher methanol production compared to free cells after 8 cycles of reuse; it also produced 6.92 mmol·L-1 methanol from biogas that originated from anaerobic digestion of rice straw, thereby validating its industrial application. This is the first report on the immobilization of methanotrophs on chemically modified chitosans to improve cell loading and relative efficiency, and its potential applications in the conversion of greenhouse gases to methanol.


Asunto(s)
Biocombustibles , Quitosano , Enzimas Inmovilizadas , Metano , Metanol , Methylococcaceae
13.
Indian J Microbiol ; 59(4): 476-481, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31762511

RESUMEN

Microbial fuel cells (MFCs) are envisioned as an evolving cost-effective process for treating organic wastes to simultaneously generate bioelectricity. Therefore, in present study a single chambered mediator- less air cathode MFC was operated for bioelectricity generation using citrus waste (CW) as a feedstock. The MFC was operated at four organic loading conditions (OLs; 3, 6, 9 and 12 kg/m3). The voltage generation and organic content reduction demonstrated the possibility of utilizing CW as a substrate in MFC. The polarization analysis revealed a high-power generation of 71.1 mW/m2 with low OL of 3 kg/m3. The decrease in pH and high volatile fatty acids (VFAs) generation was noted at high OL. Our current findings suggest better performance of MFC, in terms of energy generation and organic reduction at high OL.

14.
Indian J Microbiol ; 59(3): 370-374, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31388216

RESUMEN

Immobilization of enzymes through metal-based system is demonstrated as a promising approach to enhance its properties. In this study, the influence of metals ions, including copper, cobalt and zinc (Zn) on the immobilization of ß-glucosidase (BGL) through the synthesis of protein-inorganic hybrid was evaluated at 4 °C. Among these metal ions-based hybrids, Zn showed the highest encapsulation yield and relative activity of 87.5 and 207%, respectively. Immobilized BGL exhibited higher pH and temperature stability compared to free form. Thermal stability of hybrid improved up to 26-fold at 60 °C. After 10 cycles of reuse, immobilized enzyme retained 93.8% of residual activity. These results suggested that metal ions played a significant role in the enzyme immobilization as a protein-inorganic hybrid. Overall, this strategy can be potentially applied to enhance the properties of enzymes though effective encapsulation for the broad biotechnological applications.

15.
Indian J Microbiol ; 59(3): 379-382, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31388218

RESUMEN

The production of cheap and effective compound for medicinal application is a major challenge for scientific community. So, several biological materials have been explored for the possible application in material synthesis which are useful in biomedical uses. Here, biomolecules from green tea leaves were functionalized on the surface of silicon dioxide nanoparticles (GSiO2 NPs). Next, the decoration silver (Ag) NPs on the surface of the GSiO2 NPs was observed in very short time of incubation in aqueous AgNO3. Ultraviolet-visible spectroscopy confirmed the formation of Ag NPs and the high-resolution transmission and scanning electron microscopies confirmed the decoration of spherical Ag NPs of 10 to 15 nm size on the surface of GSiO2 NPs. The antimicrobial activity of the Ag-GSiO2 NPs was determined against Staphylococcus aureus and Escherichia coli. The Ag-GSiO2 NPs displayed sustainable antimicrobial activity compared to Ag ions. The results indicate the potential value of Ag-GSiO2 NPs in surgical material and food processing.

16.
Sci Rep ; 9(1): 12096, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31417121

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
J Biol Chem ; 294(22): 8930-8941, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30952697

RESUMEN

Bacillus anthracis is the causative agent of anthrax in humans, bovine, and other animals. B. anthracis pathogenesis requires differentiation of dormant spores into vegetative cells. The spores inherit cellular components as phenotypic memory from the parent cell, and this memory plays a critical role in facilitating the spores' revival. Because metabolism initiates at the beginning of spore germination, here we metabolically reprogrammed B. anthracis cells to understand the role of glycolytic enzymes in this process. We show that increased expression of enolase (Eno) in the sporulating mother cell decreases germination efficiency. Eno is phosphorylated by the conserved Ser/Thr protein kinase PrkC which decreases the catalytic activity of Eno. We found that phosphorylation also regulates Eno expression and localization, thereby controlling the overall spore germination process. Using MS analysis, we identified the sites of phosphorylation in Eno, and substitution(s) of selected phosphorylation sites helped establish the functional correlation between phosphorylation and Eno activity. We propose that PrkC-mediated regulation of Eno may help sporulating B. anthracis cells in adapting to nutrient deprivation. In summary, to the best of our knowledge, our study provides the first evidence that in sporulating B. anthracis, PrkC imprints phenotypic memory that facilitates the germination process.


Asunto(s)
Bacillus anthracis/fisiología , Proteínas Bacterianas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Esporas Bacterianas/metabolismo , Bacillus anthracis/enzimología , Proteínas Bacterianas/genética , Cinética , Magnesio/metabolismo , Mutagénesis Sitio-Dirigida , Fosfopiruvato Hidratasa/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
18.
Indian J Microbiol ; 59(2): 225-233, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31031438

RESUMEN

A novel alcohol dehydrogenase from Bartonella apis (BaADH) was heterologous expressed in Escherichia coli. Its biochemical properties were investigated and used to catalyze the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), which is a chiral intermediate of the cholesterol-lowering drug atorvastatin. The purified recombinant BaADH displayed 182.4 U/mg of the specific activity using ethyl 4-chloroacetoacetate as substrate under the conditions of 50 °C in pH 7.0 Tris-HCl buffer. It was stable in storage buffers of pH 7 to 9 and retains up to 96.7% of the initial activity after 24 h. The K m and V max values of BaADH were 0.11 mM and 190.4 µmol min-1 mg-1, respectively. Synthesis of (S)-CHBE catalyzed by BaADH was performed with a cofactor regeneration system using a glucose dehydrogenase, and a conversion of 94.9% can be achieved after 1 h reaction. Homology modeling and substrate docking revealed that a typical catalytic triad is in contact with local water molecules to form a catalytic system. The results indicated this ADH could contribute to the further enzymatic synthesis of (S)-CHBE.

19.
Indian J Microbiol ; 59(1): 22-26, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30728627

RESUMEN

Algae are autotrophic organisms that are widespread in water bodies. Increased pollution in water bodies leads to eutrophication. However, algae growing in lakes undergoing eutrophication could be utilized towards the generation of added-value bio-electricity using microbial fuel cells (MFCs). In the present study, two methods of electricity generation using raw algae (RA) and RA + acetate (AC) as co-substrate were analyzed in single chamber air cathode MFCs. MFCs supplemented with RA and RA + AC clearly showed higher power density, greater current generation, and improved COD (chemical oxygen demand) removal, which demonstrated the feasibility of using AC as substrate for MFC. The MFC-RA + AC (0.48 mA) generated 28% higher current relative to that generated by MFC with RA alone. Notably, the maximum power densities generated by MFC-RA and MFC-RA + AC were 230 and 410 mW/m2, respectively. MFC-RA and MFC-RA + AC exhibited TCOD (total chemical oxygen reduction) removal values of 77% and 86.6%, respectively. Despite the high influent TCOD (758 mg/l) concentration, the MFC-RA + AC exhibited an 8.5% higher COD removal relative to that of MFC-RA (525 mg/l). Our current findings demonstrated effective energy generation using algae biomass with a co-substrate.

20.
Indian J Microbiol ; 59(1): 64-72, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30728632

RESUMEN

Bacterial strains from karst landform soil were enriched via chemostat culture in the presence of sodium bicarbonate. Two chemolithotrophic strains were isolated and identified as Serratia marcescens Wy064 and Bacillus sp. Wy065. Both strains could grow using sodium bicarbonate as the sole carbon source. Furthermore, the supplement of the medium with three electron donors (Na2S, NaNO2, and Na2S2O3) improved the growth of both strains. The activities of carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) could be detected in the crude enzyme of strain Wy064, implying that the strain Wy064 might employ Calvin cycle to fix CO2. S. marcescens genome mining revealed four potential CA genes designated CA1-CA4. The proteins encoded by genes CA1-3 were cloned and expressed in Escherichia coli. The purified recombinant enzymes of CA1 and CA3 exhibited CO2 hydration activities, whereas enzyme CA2 was expressed in inclusion bodies. A CO2 hydration assay demonstrated that the specific activity of CA3 was significantly higher than that of CA1. The maximum CO2 hydration activities for CA1 and CA3 were observed at pH 7.5 and 40 °C. The activities of CA1 and CA3 were significantly enhanced by several metal ions, especially Zn2+, which resulted in 21.1-fold and 26.1-fold increases of CO2 hydration activities, respectively. The apparent K m and V max for CO2 as substrate were 27 mM and 179 WAU/mg for CA1, and 14 mM and 247 WAU/mg for CA3, respectively. Structure modeling combined with sequence analysis indicated that CA1 and CA3 should belong to the Type II ß-CA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA