Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Asunto principal
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 617(Pt 2): 18-24, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35689838

RESUMEN

Endometriosis is known to be a gynaecological condition characterised by persistent inflammation and abnormal development of endometrial stroma and glands. Researchers require a rodent model to analyse the disease environment. Animal models are the best option for investigating the etiology and effective treatment of debilitating illnesses in women since rodents, like humans, menstruate. In order to develop the model system, diethylstilbestrol (DES) was examined for its ability to induce endometriosis in rats by investigating its effect on the estrus cycle, hormones, and key markers. The results demonstrated that animals given DES had an erratic estrus cycle and aberrant hormone levels. Histomorphology revealed the development of an endometriosis environment with degenerative epithelium and enlarged glandular cells after DES induction. The higher levels of estrogen, progesterone, and MCP-1 were shown in the endometriosis induced animals. Endometriosis-induced groups had decreased levels of HOXA10 and HOXA11 and increased levels of VEGF and COX-2. Finally, the DES demonstrated endometriosis induction efficacy, implying that it might be a viable replacement for endometriosis induction.


Asunto(s)
Endometriosis , Animales , Dietilestilbestrol/farmacología , Endometriosis/inducido químicamente , Endometrio , Femenino , Humanos , Progesterona , Ratas , Receptores de Progesterona
2.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34359676

RESUMEN

Glioblastoma, an invasive high-grade brain cancer, exhibits numerous treatment challenges. Amongst the current therapies, targeting functional receptors and active signaling pathways were found to be a potential approach for treating GBM. We exploited the role of endogenous expression of GPR17, a G protein-coupled receptor (GPCR), with agonist GA-T0 in the survival and treatment of GBM. RNA sequencing was performed to understand the association of GPR17 expression with LGG and GBM. RT-PCR and immunoblotting were performed to confirm the endogenous expression of GPR17 mRNA and its encoded protein. Biological functions of GPR17 in the GBM cells was assessed by in vitro analysis. HPLC and histopathology in wild mice and an acute-toxicity analysis in a patient-derived xenograft model were performed to understand the clinical implication of GA-T0 targeting GPR17. We observed the upregulation of GPR17 in association with improved survival of LGG and GBM, confirming it as a predictive biomarker. GA-T0-stimulated GPR17 leads to the inhibition of cyclic AMP and calcium flux. GPR17 signaling activation enhances cytotoxicity against GBM cells and, in patient tissue-derived mesenchymal subtype GBM cells, induces apoptosis and prevents proliferation by stoppage of the cell cycle at the G1 phase. Modulation of the key genes involved in DNA damage, cell cycle arrest, and in several signaling pathways, including MAPK/ERK, PI3K-Akt, STAT, and NF-κB, prevents tumor regression. In vivo activation of GPR17 by GA-T0 reduces the tumor volume, uncovering the potential of GA-T0-GPR17 as a targeted therapy for GBM treatment. Conclusion: Our analysis suggests that GA-T0 targeting the GPR17 receptor presents a novel therapy for treating glioblastoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA