Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JOR Spine ; 3(3): e1125, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33015582

RESUMEN

Degeneration of the intervertebral disc (IVD) is a condition that is often associated with debilitating back pain. There are no disease-modifying treatments available to halt the progression of this ubiquitous disorder. This is partly due to a lack of understanding of extracellular matrix (ECM) changes that occur at the micro- and nanometer size scales as the disease progresses. Over the past decade, atomic force microscopy (AFM) has been utilized as a tool to investigate the impact of disease on nanoscale structure of ECM in bone, skin, tendon, and dentin. We have expanded this methodology to include the IVD and report the first quantitative analysis of ECM structure at submicron size scales in a murine model for progressive IVD degeneration. Collagen D-spacing, a metric of nanoscale structure at the fibril level, was observed as a distribution of values with an overall average value of 62.5 ± 2.5 nm. In degenerative discs, the fibril D-spacing distribution shifted towards higher values in both the annulus fibrosus and nucleus pulposus (NP) (P < .05). A novel microstructural feature, collagen toroids, defined by a topographical pit enclosed by fibril-forming matrix was observed in the NP. With degeneration, these microstructures became more numerous and the morphology was altered from circular (aspect ratio 1.0 ± 0.1) to oval (aspect ratio 1.5 ± 0.4), P < .005. These analyses provide ECM structural details of the IVD at size scales that have historically been missing in studies of disc degeneration. Knowledge gained from these insights may aid the development of novel disease-modifying therapeutics.

2.
J Immunol ; 204(4): 868-878, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31915261

RESUMEN

Osteoclasts (OC) originate from either bone marrow (BM)-resident or circulating myeloid OC progenitors (OCP) expressing the receptor CX3CR1. Multiple lines of evidence argue that OCP in homeostasis and inflammation differ. We investigated the relative contributions of BM-resident and circulating OCP to osteoclastogenesis during homeostasis and fracture repair. Using CX3CR1-EGFP/TRAP tdTomato mice, we found CX3CR1 expression in mononuclear cells, but not in multinucleated TRAP+ OC. However, CX3CR1-expressing cells generated TRAP+ OC on bone within 5 d in CX3CR1CreERT2/Ai14 tdTomato reporter mice. To define the role that circulating cells play in osteoclastogenesis during homeostasis, we parabiosed TRAP tdTomato mice (CD45.2) on a C57BL/6 background with wild-type (WT) mice (CD45.1). Flow cytometry (CD45.1/45.2) demonstrated abundant blood cell mixing between parabionts after 2 wk. At 4 wk, there were numerous tdTomato+ OC in the femurs of TRAP tdTomato mice but almost none in WT mice. Similarly, cultured BM stimulated to form OC demonstrated multiple fluorescent OC in cell cultures from TRAP tdTomato mice, but not from WT mice. Finally, flow cytometry confirmed low-level engraftment of BM cells between parabionts but significant engraftment in the spleens. In contrast, during fracture repair, we found that circulating CX3CR1+ cells migrated to bone, lost expression of CX3CR1, and became OC. These data demonstrate that OCP, but not mature OC, express CX3CR1 during both homeostasis and fracture repair. We conclude that, in homeostasis mature OC derive predominantly from BM-resident OCP, whereas during fracture repair, circulating CX3CR1+ cells can become OC.

3.
J Immunol ; 203(1): 105-116, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31109956

RESUMEN

We found that protease-activated receptor 1 (PAR1) was transiently induced in cultured osteoclast precursor cells. Therefore, we examined the bone phenotype and response to resorptive stimuli of PAR1-deficient (knockout [KO]) mice. Bones and bone marrow-derived cells from PAR1 KO and wild-type (WT) mice were assessed using microcomputed tomography, histomorphometry, in vitro cultures, and RT-PCR. Osteoclastic responses to TNF-α (TNF) challenge in calvaria were analyzed with and without a specific neutralizing Ab to the Notch2-negative regulatory region (N2-NRR Ab). In vivo under homeostatic conditions, there were minimal differences in bone mass or bone cells between PAR1 KO and WT mice. However, PAR1 KO myeloid cells demonstrated enhanced osteoclastogenesis in response to receptor activator of NF-κB ligand (RANKL) or the combination of RANKL and TNF. Strikingly, in vivo osteoclastogenic responses of PAR1 KO mice to TNF were markedly enhanced. We found that N2-NRR Ab reduced TNF-induced osteoclastogenesis in PAR1 KO mice to WT levels without affecting WT responses. Similarly, in vitro N2-NRR Ab reduced RANKL-induced osteoclastogenesis in PAR1 KO cells to WT levels without altering WT responses. We conclude that PAR1 functions to limit Notch2 signaling in responses to RANKL and TNF and moderates osteoclastogenic response to these cytokines. This effect appears, at least in part, to be cell autonomous because enhanced osteoclastogenesis was seen in highly purified PAR1 KO osteoclast precursor cells. It is likely that this pathway is involved in regulating the response of bone to diseases associated with inflammatory signals.


Asunto(s)
Enfermedades Óseas/inmunología , Inflamación/inmunología , Osteoclastos/fisiología , Receptor Notch2/metabolismo , Receptor PAR-1/metabolismo , Animales , Anticuerpos Neutralizantes/metabolismo , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis/genética , Ligando RANK/metabolismo , Receptor Notch2/inmunología , Receptor PAR-1/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
4.
Endocrinology ; 157(8): 3058-69, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27267711

RESUMEN

Runt-related transcription factor 1 (Runx1), a master regulator of hematopoiesis, is expressed in preosteoclasts. Previously we evaluated the bone phenotype of CD11b-Cre Runx1(fl/fl) mice and demonstrated enhanced osteoclasts and decreased bone mass in males. However, an assessment of the effects of Runx1 deletion in female osteoclast precursors was impossible with this model. Moreover, the role of Runx1 in myeloid cell differentiation into other lineages is unknown. Therefore, we generated LysM-Cre Runx1(fl/fl) mice, which delete Runx1 equally (∼80% deletion) in myeloid precursor cells from both sexes and examined the capacity of these cells to differentiate into osteoclasts and phagocytic and antigen-presenting cells. Both female and male LysM-Cre Runx1(fl/fl) mice had decreased trabecular bone mass (72% decrease in bone volume fraction) and increased osteoclast number (2-3 times) (P < .05) without alteration of osteoblast histomorphometric indices. We also demonstrated that loss of Runx1 in pluripotential myeloid precursors with LysM-Cre did not alter the number of myeloid precursor cells in bone marrow or their ability to differentiate into phagocytizing or antigen-presenting cells. This study demonstrates that abrogation of Runx1 in multipotential myeloid precursor cells significantly and specifically enhanced the ability of receptor activator of nuclear factor-κB ligand to stimulate osteoclast formation and fusion in female and male mice without affecting other myeloid cell fates. In turn, increased osteoclast activity in LysM-Cre Runx1(fl/fl) mice likely contributed to a decrease in bone mass. These dramatic effects were not due to increased osteoclast precursors in the deleted mutants and argue that inhibition of Runx1 in multipotential myeloid precursor cells is important for osteoclast formation and function.


Asunto(s)
Células Presentadoras de Antígenos/fisiología , Diferenciación Celular/genética , Transdiferenciación Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Células Progenitoras Mieloides/fisiología , Osteoclastos/fisiología , Fagocitos/fisiología , Animales , Resorción Ósea/genética , Células Cultivadas , Femenino , Hematopoyesis/genética , Masculino , Ratones , Ratones Transgénicos
5.
Mol Endocrinol ; 28(4): 546-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24606124

RESUMEN

Excessive bone resorption is the cause of several metabolic bone diseases including osteoporosis. Thus, identifying factors that can inhibit osteoclast formation and/or activity may define new drug targets that can be used to develop novel therapies for these conditions. Emerging evidence demonstrates that the master regulator of hematopoiesis, Runx1, is expressed in preosteoclasts and may influence skeletal health. To examine the potential role of Runx1 in osteoclast formation and function, we deleted its expression in myeloid osteoclast precursors by crossing Runx1 floxed mice (Runx1(F/F)) with CD11b-Cre transgenic mice. Mice lacking Runx1 in preosteoclasts (CD11b-Cre;Runx1(F/F)) exhibited significant loss of femoral trabecular and cortical bone mass compared with that in Cre-negative mice. In addition, serum levels of collagen type 1 cross-linked C-telopeptide, a biomarker of osteoclast-mediated bone resorption, were significantly elevated in CD11b-Cre;Runx1(F/F) mice compared with those in Runx1(F/F) mice. Tartrate-resistant acid phosphatase-positive osteoclasts that differentiated from bone marrow cells of CD11b-Cre;Runx1(F/F) mice in vitro were larger, were found in greater numbers, and had increased bone resorbing activity than similarly cultured cells from Runx1(F/F) mice. CD11b-Cre;Runx1(F/F) bone marrow cells that were differentiated into osteoclasts in vitro also had elevated mRNA levels of osteoclast-related genes including vacuolar ATPase D2, cathepsin K, matrix metalloproteinase 9, calcitonin receptor, osteoclast-associated receptor, nuclear factor of activated T cells cytoplasmic 1, and cFos. These data indicate that Runx1 expression in preosteoclasts negatively regulates osteoclast formation and activity and contributes to overall bone mass.


Asunto(s)
Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Osteoclastos/patología , Animales , Células de la Médula Ósea/metabolismo , Resorción Ósea/metabolismo , Resorción Ósea/patología , Huesos/metabolismo , Huesos/patología , Antígeno CD11b/metabolismo , Eliminación de Gen , Integrasas/metabolismo , Ratones , Tamaño de los Órganos , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoclastos/metabolismo , Osteogénesis
6.
J Bone Miner Res ; 28(3): 618-26, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23044658

RESUMEN

We examined the effects that ovariectomy had on sclerostin mRNA and protein levels in the bones of 8-week-old mice that were either sham-operated (SHAM) or ovariectomized (OVX) and then euthanized 3 or 6 weeks later. In this model, bone loss occurred between 3 and 5 weeks postsurgery. In calvaria, ovariectomy significantly decreased sclerostin mRNA levels at 6 weeks postsurgery (by 52%) but had no significant effect at 3 weeks. In contrast, sclerostin mRNA levels were significantly lower in OVX femurs at 3 weeks postsurgery (by 53%) but equal to that of SHAM at 6 weeks. The effects of ovariectomy on sclerostin were not a global response of osteocytes because they were not mimicked by changes in the mRNA levels for two other relatively osteocyte-specific genes: DMP-1 and FGF-23. Sclerostin protein decreased by 83% and 60%, at 3 and 6 weeks postsurgery in calvaria, respectively, and by 38% in lumbar vertebrae at 6 weeks. We also detected decreases in sclerostin by immunohistochemistry in cortical osteocytes of the humerus at 3 weeks postsurgery. However, there were no significant effects of ovariectomy on sclerostin protein in femurs or on serum sclerostin at 3 and 6 weeks postsurgery. These results demonstrate that ovariectomy has variable effects on sclerostin mRNA and protein in mice, which are dependent on the bones examined and the time after surgery. Given the discrepancy between the effects of ovariectomy on serum sclerostin levels and sclerostin mRNA and protein levels in various bones, these results argue that, at least in mice, serum sclerostin levels may not accurately reflect changes in the local production of sclerostin in bones. Additional studies are needed to evaluate whether this is also the case in humans.


Asunto(s)
Glicoproteínas/metabolismo , Ovariectomía , Proteínas Adaptadoras Transductoras de Señales , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Femenino , Factor-23 de Crecimiento de Fibroblastos , Glicoproteínas/sangre , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Tomografía Computarizada por Rayos X
7.
J Bone Miner Res ; 27(5): 1030-42, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22258693

RESUMEN

Interleukin-7 is a critical cytokine for lymphoid development and a direct inhibitor of in vitro osteoclastogenesis in murine bone marrow cultures. To explore the role of IL-7 in bone, we generated transgenic mouse lines bearing the 2.3-kb rat collagen 1α1 promoter driving the expression of human IL-7 specifically in osteoblasts. In addition, we crossed these mice with IL-7-deficient mice to determine if the alterations in lymphopoiesis, bone mass, and osteoclast formation observed in the IL-7 knockout (KO) mice could be rescued by osteoblast-specific overexpression of IL-7. Here, we show that mice overexpressing human IL-7 in the osteoblast lineage showed increased trabecular bone volume in vivo by µCT and decreased osteoclast formation in vitro. Furthermore, targeted overexpression of IL-7 in osteoblasts rescued the osteopenic bone phenotype and B-cell development of IL-7 KO mice but did not have an effect on T lymphopoiesis, which occurs in the periphery. The bone phenotypes in IL-7 KO mice and targeted IL-7-overexpressing mouse models were observed only in females. These results likely reflect both direct inhibitory effects of IL-7 on osteoclastogenesis in vivo and sex-specific differences in responses to IL-7.


Asunto(s)
Regulación de la Expresión Génica , Interleucina-7/deficiencia , Interleucina-7/genética , Osteoblastos/metabolismo , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Humanos , Linfopoyesis , Ratones , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Reacción en Cadena de la Polimerasa , Ratas , Factores Sexuales
8.
J Bone Miner Res ; 21(5): 695-702, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16734384

RESUMEN

UNLABELLED: IL-7 is produced by stromal cells in bone marrow and is a major regulator of B and T lymphopoiesis. It is also a direct inhibitor of osteoclastogenesis in vitro. In this study we show that IL-7-deficient mice have increased OC and decreased trabecular bone volume compared with WT mice but mimic WT mice in the amount of trabecular but not cortical bone lost after ovariectomy. INTRODUCTION: Interleukin (IL)-7 is a potent regulator of lymphocyte development, which has significant effects on bone. Bone marrow cell cultures from IL-7 deficient (IL-7KO) mice produced significantly more TRACP(+) osteoclasts (OCs) than did cells from wildtype (WT) mice. A previous study found that treatment of mice with a neutralizing antibody to IL-7 blocked ovariectomy (OVX)-induced bone loss. We examined if differences exist between the bones of WT and IL-7KO mice and if OVX altered bone mass in IL-7KO mice. MATERIALS AND METHODS: Studies were in 2-month-old sham-operated (SHAM) and OVX female mice that were killed 4 weeks after surgery. IL-7KO mice and WT controls were in a C57BL/6 background. Both vertebrae (L(1)) and femora were evaluated by DXA, muCT, and histomorphometry. IL-7KO mice were confirmed as IL-7 deficient by their almost total lack of mature B cells in their bone marrow. RESULTS: There was significantly less trabecular bone volume in the vertebrae of IL-7KO mice than in WT mice. In addition, IL-7KO mice had significantly decreased (p < 0.05) trabecular number (13%) and increased trabecular spacing (15%). OVX decreased vertebral trabecular bone volume (TBV) by 21% (p < 0.05) in WT mice and by 22% (p < 0.05) in IL-7KO mice compared with SHAM. IL-7KO SHAM mice also had significantly less (30%) TBV (TA/TTA) in their femurs, as measured histomorphometrically, than did WT SHAM mice. Femurs from IL-7KO SHAM mice had significantly increased percent OC surface (23%) compared with WT SHAM. As in the vertebrae, OVX significantly decreased femoral TBV in both WT and IL-7KO mice by similar amounts (47% and 48%, respectively, p < 0.05 for both) compared with SHAM. However, OVX decreased cortical bone mass in WT but not in IL-7KO bones. We also examined bone marrow cells from WT and IL-7KO mice. Bone marrow cells from IL-7KO animals showed a significant increase in the number of TRACP(+) osteoclast-like cells (OCLs), which formed in cultures that were stimulated with macrophage-colony stimulating factor (M-CSF) and RANKL (both at 30 ng/ml). However, there was no significant difference in the number of OCLs that formed in B lymphocyte-depleted (B220(-)) bone marrow cell cultures from WT and IL-7KO mice. CONCLUSIONS: IL-7 deficiency in mice caused increased OC number in bone and decreased bone mass. OVX-induced bone loss in IL-7-deficient mice was selective and occurred in trabecular but not cortical bone.


Asunto(s)
Interleucina-7/fisiología , Osteoclastos/citología , Osteoporosis/etiología , Ovariectomía , Absorciometría de Fotón , Animales , Femenino , Citometría de Flujo , Interleucina-7/genética , Ratones , Ratones Noqueados
9.
Bone ; 38(5): 678-85, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16309985

RESUMEN

Receptor activator of NF-kappaB ligand (RANKL) and interleukin-1 (IL-1) individually plays a critical role in the differentiation and activation of osteoclasts in bone. In addition, both RANKL and IL-1 activate similar signal transduction pathways including p38 MAP kinase and c-Jun NH(2) terminal kinase (JNK). We examined if endogenously produced IL-1 influenced osteoclast-like cell (OCL) formation in murine bone marrow and bone marrow monocyte (BMM) cultures that were stimulated with M-CSF and RANKL. RANKL stimulated OCL formation in a dose-dependent manner in bone marrow cultures, and this response was significantly inhibited by IL-1 RA (100 ng/ml), a specific IL-1 antagonist. Interleukin-1 further increased OCL formation in BMM cultures that were treated with M-CSF (30 ng/ml) and RANKL (1, 3, 10 and 30 ng/ml). In addition, BMM cultures from IL-1 type I receptor-deficient mice, which do not respond to IL-1, demonstrated significantly less OCL formation compared to wild-type BMM cultures. We examined the time course and dose response of IL-1alpha protein expression by ELISA in BMM cultures that were treated with or without M-CSF and RANKL. RANKL dose dependently stimulated IL-1alpha protein significantly (up to 46%) in 6-day cultures. The interaction of RANKL and IL-1 on osteoclastogenesis did not appear significantly dependent on prostaglandin synthesis since PGE(2) expression in the conditioned medium of BMM cultures was nearly undetectable and the PGHS-2 specific inhibitor, NS-398, was without effect. We also investigated the effect of IL-1 on p38 MAP kinase and JNK in BMM cultures. The combination of RANKL and IL-1 had additive effects on JNK but not p38 MAP kinase compared to results in cultures treated with RANKL or IL-1 alone. In addition, SP600125, a specific JNK inhibitor, markedly reduced OCL formation in BMM cultures that were treated with RANKL or the combination of RANKL and IL-1. These findings demonstrate that endogenously produced IL-1 augments the response of bone marrow cells to RANKL, and this effect appears mediated by mechanisms that are associated with enhancement of JNK activity.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Proteínas Portadoras/farmacología , Diferenciación Celular , Interleucina-1/fisiología , Glicoproteínas de Membrana/farmacología , Osteoclastos/citología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-1/antagonistas & inhibidores , Interleucina-1/farmacología , MAP Quinasa Quinasa 4/antagonistas & inhibidores , MAP Quinasa Quinasa 4/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Sialoglicoproteínas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Endocrinology ; 144(8): 3524-31, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12865334

RESUMEN

We examined the direct effects of IL-7 on osteoclastogenesis in murine bone marrow cultures, using cells from wild-type and IL-7- and IL-7 receptor (IL-7R)-deficient mice. IL-7 inhibited osteoclast-like cells (OCL) formation in macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappaB ligand (RANKL)-stimulated (both at 30 ng/ml) murine bone marrow cultures. Significant inhibitory effects were seen at 1 ng/ml (57%) and 10 ng/ml (86%). IL-7 also inhibited (P < 0.05) OCL formation in bone marrow cultures that were stimulated with vitamin D(3) (10(-8) M, 60%), bovine PTH (bPTH) (100 ng/ml, 54%), or RANKL alone (30 ng/ml, 50%). IL-7 (10 ng/ml) increased expression of the B lymphocyte marker B220 from 40-86% of total nonadherent cells in cultures treated with M-CSF and RANKL. Bone marrow cells from IL-7-deficient [IL-7 knockout (KO)] mice showed a significant (P < 0.05) increase in tartrate-resistant acid phosphatase(+) OCL numbers in cultures that were stimulated with vitamin D(3) (136 +/- 13.3%), bPTH (196 +/- 18.8%), or M-CSF and RANKL (160 +/- 7.2%). In contrast, in vitro osteoclast formation in bone marrow from IL-7R-deficient (IL-7R KO) mice showed a significant decrease in tartrate-resistant acid phosphatase(+) OCL numbers in cultures that were stimulated with vitamin D(3), PTH, RANKL, or M-CSF and RANKL. These results demonstrate that there are differences in the mechanisms regulating OCL formation between IL-7 KO and IL-7R KO cells. It seems that IL-7 is a direct inhibitor of OCL formation in vitro, based on results of adding IL-7 to wild-type cultures and the responses of IL-7 KO cells. It is unknown why IL-7R KO cells behave differently from IL-7 KO cells in vitro. However, it is possible that additional cytokines interact with IL-7R and that loss of these signals contributes to the responses of IL-7R KO cells. Alternatively, IL-7 may interact with multiple receptors.


Asunto(s)
Diferenciación Celular , Interleucina-7/farmacología , Osteoclastos/citología , Fosfatasa Ácida/análisis , Animales , Linfocitos B/citología , Células de la Médula Ósea/citología , Proteínas Portadoras/farmacología , Recuento de Células , Células Cultivadas , Colecalciferol/farmacología , Ensayo de Unidades Formadoras de Colonias , Cruzamientos Genéticos , Citometría de Flujo , Granulocitos , Interleucina-7/deficiencia , Interleucina-7/fisiología , Isoenzimas/análisis , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos , Glicoproteínas de Membrana/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Hormona Paratiroidea/farmacología , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Fosfatasa Ácida Tartratorresistente
11.
Bone ; 32(6): 581-90, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12810165

RESUMEN

We examined the osteoclastogenic potential of murine bone marrow cells that were fractionated according to their expression of the surface antigen CD45R. Osteoclast-like cells (OCL) with many authentic osteoclast characteristics readily formed in purified CD45R(+) murine bone marrow cell cultures after treatment with receptor activator of nuclear factor kappaB ligand (RANKL) and M-CSF. Ovariectomy (Ovx) caused a 1.5- to 2-fold increase in OCL number in unfractionated and CD45R(+) murine bone marrow cell cultures without affecting OCL formation in CD45R(-) marrow cells. Limiting dilution assays confirmed that Ovx caused an increase in osteoclast precursor cell number in CD45R(+) but not CD45R(-) cells. Mice deficient in the type 1 IL-1 receptor (IL-1R1 KO) do not lose bone mass after Ovx. We found that unfractionated, CD45R(+), and CD45R(-) bone marrow cells from IL-1R1 KO mice showed no increase in OCL formation in vitro after Ovx. In both the wild-type (WT) and the IL-1R1 KO mice Ovx was associated with a 2-fold increase in pre-B-lymphocytes. About 1.3-3.5% of murine marrow cells expressed surface RANK (the receptor for RANKL) while about 11.9-15% of murine bone marrow cells expressed c-Fms (the receptor for M-CSF). There was little effect of Ovx on cells expressing either RANK or c-Fms. These results demonstrate that CD45R expression identifies a subset of murine bone marrow cells whose ability to form OCL in vivo is regulated by estrogen in WT but not IL-1R1 KO cells. The effects of estrogen on bone mass may be related to these responses.


Asunto(s)
Estrógenos/metabolismo , Células Precursoras de Granulocitos/metabolismo , Antígenos Comunes de Leucocito/análisis , Osteoclastos/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Bovinos , Células Cultivadas , Estrógenos/genética , Femenino , Células Precursoras de Granulocitos/citología , Antígenos Comunes de Leucocito/biosíntesis , Antígenos Comunes de Leucocito/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/citología , Ovariectomía , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Ratas , Receptores de Interleucina-1/deficiencia , Receptores de Interleucina-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...