Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microb Physiol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39047710

RESUMEN

BACKGROUND: Dinoflagellates are a monophyletic group within the taxon Alveolata, which comprises unicellular eukaryotes. Dinoflagellates have long been studied for their organismic and morphologic diversity as well as striking cellular features. They have a main size range of 10‒100 µm, a complex "cell covering", exceptionally large genomes (~1‒250 Gbp with a mean of 50,000 protein-encoding genes) spread over a variable number of highly condensed chromosomes, and perform a closed mitosis with extranuclear spindles (dinomitosis). Photosynthetic, marine, and free-living Prorocentrum cordatum is a ubiquitously occurring, bloom-forming dinoflagellate and an emerging model system, particularly with respect to systems biology. SUMMARY: Focused ion beam/scanning electron microscopy (FIB/SEM) analysis of P. cordatum recently revealed (i) a flattened nucleus with unusual structural features and a total of 62 tightly packed chromosomes, (ii) a single, barrel-shaped chloroplast devoid of grana and harboring multiple starch granules, (iii) a single, highly reticular mitochondrion, and (iv) multiple phosphate and lipid storage bodies. Comprehensive proteomics of subcellular fractions suggested (i) major basic nuclear proteins to participate in chromosome condensation, (ii) composition of nuclear pores to differ from standard knowledge, (iii) photosystems I and II, chloroplast complex I, and chlorophyll a-b binding light harvesting complex to form a large megacomplex (>1.5 MDa), and (iv) an extraordinary richness in pigment-binding proteins. Systems biology-level investigation of heat stress response demonstrated a concerted down-regulation of CO2-concentrating mechanisms, CO2-fixation, central metabolism, and monomer biosynthesis, which agrees with reduced growth yields. KEY MESSAGES: FIB/SEM analysis revealed new insights into the remarkable subcellular architecture of P. cordatum, complemented by proteogenomic unravelling of novel nuclear structures and a photosynthetic megacomplex. These recent findings are put in the wider context of current understanding of dinoflagellates.

2.
Plant Physiol ; 195(1): 306-325, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330164

RESUMEN

Marine photosynthetic (micro)organisms drive multiple biogeochemical cycles and display a large diversity. Among them, the bloom-forming, free-living dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) stands out with its distinct cell biological features. Here, we obtained insights into the structural properties of the chloroplast and the photosynthetic machinery of P. cordatum using microscopic and proteogenomic approaches. High-resolution FIB/SEM analysis revealed a single large chloroplast (∼40% of total cell volume) with a continuous barrel-like structure, completely lining the inner face of the cell envelope and enclosing a single reticular mitochondrium, the Golgi apparatus, as well as diverse storage inclusions. Enriched thylakoid membrane fractions of P. cordatum were comparatively analyzed with those of the well-studied model-species Arabidopsis (Arabidopsis thaliana) using 2D BN DIGE. Strikingly, P. cordatum possessed a large photosystem-light harvesting megacomplex (>1.5 MDa), which is dominated by photosystems I and II (PSI, PSII), chloroplast complex I, and chlorophyll a-b binding light harvesting complex proteins. This finding parallels the absence of grana in its chloroplast and distinguishes from the predominant separation of PSI and PSII complexes in A. thaliana, indicating a different mode of flux balancing. Except for the core elements of the ATP synthase and the cytb6f-complex, the composition of the other complexes (PSI, PSII, and pigment-binding proteins, PBPs) of P. cordatum differed markedly from those of A. thaliana. Furthermore, a high number of PBPs was detected, accounting for a large share of the total proteomic data (∼65%) and potentially providing P. cordatum with flexible adaptation to changing light regimes.


Asunto(s)
Cloroplastos , Dinoflagelados , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema II , Proteínas Protozoarias , Cloroplastos/ultraestructura , Dinoflagelados/genética , Dinoflagelados/metabolismo , Dinoflagelados/ultraestructura , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Microscopía Electrónica de Rastreo , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Genoma de Protozoos/genética , Variación Genética
3.
Genome Biol ; 24(1): 265, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996937

RESUMEN

BACKGROUND: "Red tides" are harmful algal blooms caused by dinoflagellate microalgae that accumulate toxins lethal to other organisms, including humans via consumption of contaminated seafood. These algal blooms are driven by a combination of environmental factors including nutrient enrichment, particularly in warm waters, and are increasingly frequent. The molecular, regulatory, and evolutionary mechanisms that underlie the heat stress response in these harmful bloom-forming algal species remain little understood, due in part to the limited genomic resources from dinoflagellates, complicated by the large sizes of genomes, exhibiting features atypical of eukaryotes. RESULTS: We present the de novo assembled genome (~ 4.75 Gbp with 85,849 protein-coding genes), transcriptome, proteome, and metabolome from Prorocentrum cordatum, a globally abundant, bloom-forming dinoflagellate. Using axenic algal cultures, we study the molecular mechanisms that underpin the algal response to heat stress, which is relevant to current ocean warming trends. We present the first evidence of a complementary interplay between RNA editing and exon usage that regulates the expression and functional diversity of biomolecules, reflected by reduction in photosynthesis, central metabolism, and protein synthesis. These results reveal genomic signatures and post-transcriptional regulation for the first time in a pelagic dinoflagellate. CONCLUSIONS: Our multi-omics analyses uncover the molecular response to heat stress in an important bloom-forming algal species, which is driven by complex gene structures in a large, high-G+C genome, combined with multi-level transcriptional regulation. The dynamics and interplay of molecular regulatory mechanisms may explain in part how dinoflagellates diversified to become some of the most ecologically successful organisms on Earth.


Asunto(s)
Dinoflagelados , Floraciones de Algas Nocivas , Humanos , Dinoflagelados/genética , Multiómica , Genómica , Respuesta al Choque Térmico
4.
mSphere ; 8(4): e0003823, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37358287

RESUMEN

The marine, bloom-forming dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) has a genome atypical of eukaryotes, with a large size of ~4.15 Gbp, organized in plentiful, highly condensed chromosomes and packed in a dinoflagellate-specific nucleus (dinokaryon). Here, we apply microscopic and proteogenomic approaches to obtain new insights into this enigmatic nucleus of axenic P. cordatum. High-resolution focused ion beam/scanning electron microscopy analysis of the flattened nucleus revealed highest density of nuclear pores in the vicinity of the nucleolus, a total of 62 tightly packed chromosomes (~0.4-6.7 µm3), and interaction of several chromosomes with the nucleolus and other nuclear structures. A specific procedure for enriching intact nuclei was developed to enable proteomic analyses of soluble and membrane protein-enriched fractions. These were analyzed with geLC and shotgun approaches employing ion-trap and timsTOF (trapped-ion-mobility-spectrometry time-of-flight) mass spectrometers, respectively. This allowed identification of 4,052 proteins (39% of unknown function), out of which 418 were predicted to serve specific nuclear functions; additional 531 proteins of unknown function could be allocated to the nucleus. Compaction of DNA despite very low histone abundance could be accomplished by highly abundant major basic nuclear proteins (HCc2-like). Several nuclear processes including DNA replication/repair and RNA processing/splicing can be fairly well explained on the proteogenomic level. By contrast, transcription and composition of the nuclear pore complex remain largely elusive. One may speculate that the large group of potential nuclear proteins with currently unknown functions may serve yet to be explored functions in nuclear processes differing from those of typical eukaryotic cells. IMPORTANCE Dinoflagellates form a highly diverse group of unicellular microalgae. They provide keystone species for the marine ecosystem and stand out among others by their very large, unusually organized genomes embedded in the nuclei markedly different from other eukaryotic cells. Functional insights into nuclear and other cell biological structures and processes of dinoflagellates have long been hampered by the paucity of available genomic sequences. The here studied cosmopolitan P. cordatum belongs to the harmful algal bloom-forming, marine dinoflagellates and has a recently de novo assembled genome. We present a detailed 3D reconstruction of the P. cordatum nucleus together with comprehensive proteogenomic insights into the protein equipment mastering the broad spectrum of nuclear processes. This study significantly advances our understanding of mechanisms and evolution of the conspicuous dinoflagellate cell biology.


Asunto(s)
Dinoflagelados , Dinoflagelados/genética , Proteómica/métodos , Ecosistema , Núcleo Celular , Proteínas Nucleares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...