Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38543520

RESUMEN

Considering the increasing interest in understanding the biotic component of methane removal from our atmosphere, it becomes essential to study the physiological characteristics and genomic potential of methanotroph isolates, especially their traits allowing them to adapt to elevated growth temperatures. The genetic signatures of Methylocaldum species have been detected in many terrestrial and aquatic ecosystems. A small set of representatives of this genus has been isolated and maintained in culture. The genus is commonly described as moderately thermophilic, with the growth optimum reaching 50 °C for some strains. Here, we present a comparative analysis of genomes of three Methylocaldum strains-two terrestrial M. szegediense strains (O-12 and Norfolk) and one marine strain, Methylocaldum marinum (S8). The examination of the core genome inventory of this genus uncovers significant redundancy in primary metabolic pathways, including the machinery for methane oxidation (numerous copies of pmo genes) and methanol oxidation (duplications of mxaF, xoxF1-5 genes), three pathways for one-carbon (C1) assimilation, and two methods of carbon storage (glycogen and polyhydroxyalkanoates). We also investigate the genetics of melanin production pathways as a key feature of the genus.

2.
Plants (Basel) ; 12(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447048

RESUMEN

The search for methanotrophs as plant-growth-promoting rhizobacteria (PGPR) presents an important contribution to mitigating the impact of global warming by restoring the natural soil potential for consuming methane while benefiting plants during droughts. Our in silico simulations suggest that water, produced as a byproduct of methane oxidation, can satisfy the cell growth requirement. In addition to water, methanotrophs can produce metabolites that stimulate plant growth. Considering this, we proposed that applying methanotrophs as PGPR can alleviate the effect of droughts on crops, while stimulating atmospheric methane consumption. In this work, we isolated a series of methanotrophic communities from the rhizospheres of different crops, including Italian sweet pepper and zucchini, using an atmosphere enriched with pure methane gas, to determine their potential for alleviating drought stress in wheat plants. Subsequently, 23 strains of nonmethanotrophic bacteria present in the methanotrophic communities were isolated and characterized. We then analyzed the contribution of the methane-consuming consortia to the improvement of plant growth under drought conditions, showing that some communities contributed to increases in the wheat plants' lengths and weights, with statistically significant differences according to ANOVA models. Furthermore, we found that the presence of methane gas can further stimulate the plant-microbe interactions, resulting in larger plants and higher drought tolerance.

3.
J Ind Microbiol Biotechnol ; 49(2)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35134957

RESUMEN

Rhamnolipids (RLs) are well-studied biosurfactants naturally produced by pathogenic strains of Pseudomonas aeruginosa. Current methods to produce RLs in native and heterologous hosts have focused on carbohydrates as production substrate; however, methane (CH4) provides an intriguing alternative as a substrate for RL production because it is low cost and may mitigate greenhouse gas emissions. Here, we demonstrate RL production from CH4 by Methylotuvimicrobium alcaliphilum DSM19304. RLs are inhibitory to M. alcaliphilum growth (<0.05 g/l). Adaptive laboratory evolution was performed by growing M. alcaliphilum in increasing concentrations of RLs, producing a strain that grew in the presence of 5 g/l of RLs. Metabolomics and proteomics of the adapted strain grown on CH4 in the absence of RLs revealed metabolic changes, increase in fatty acid production and secretion, alterations in gluconeogenesis, and increased secretion of lactate and osmolyte products compared with the parent strain. Expression of plasmid-borne RL production genes in the parent M. alcaliphilum strain resulted in cessation of growth and cell death. In contrast, the adapted strain transformed with the RL production genes showed no growth inhibition and produced up to 1 µM of RLs, a 600-fold increase compared with the parent strain, solely from CH4. This work has promise for developing technologies to produce fatty acid-derived bioproducts, including biosurfactants, from CH4.


Asunto(s)
Ácidos Grasos , Methylococcaceae , Ácidos Grasos/metabolismo , Glucolípidos/metabolismo , Methylococcaceae/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
5.
Methods Enzymol ; 650: 185-213, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867021

RESUMEN

A number of minerals, such as copper, cobalt, and rare earth elements (REE), are essential modulators of microbial one-carbon metabolism. This chapter provides an overview of the gene expression study design and analysis protocols for uncovering REE-induced changes in methylotrophic bacteria. By interrogating relationships and differences in total gene expression induced by mineral micronutrients, a deeper understanding of gene regulation at a systems scale can be gained. With careful design and execution of RNA-sequencing experiments, thorough processing and assessment of read quality can be utilized to assess and adjust for possible biases. By ensuring only quality data are utilized in downstream processes, differential gene expression, overrepresented analyses, and gene-set enrichment analyses provide reliable and reproducible representation of pathways and functions which are being affected by changes in environmental conditions.


Asunto(s)
Methylococcaceae , Expresión Génica
6.
Nat Commun ; 11(1): 2041, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341341

RESUMEN

How complex, multi-component macromolecular machines evolved remains poorly understood. Here we reveal the evolutionary origins of the chemosensory machinery that controls flagellar motility in Escherichia coli. We first identify ancestral forms still present in Vibrio cholerae, Pseudomonas aeruginosa, Shewanella oneidensis and Methylomicrobium alcaliphilum, characterizing their structures by electron cryotomography and finding evidence that they function in a stress response pathway. Using bioinformatics, we trace the evolution of the system through γ-Proteobacteria, pinpointing key evolutionary events that led to the machine now seen in E. coli. Our results suggest that two ancient chemosensory systems with different inputs and outputs (F6 and F7) existed contemporaneously, with one (F7) ultimately taking over the inputs and outputs of the other (F6), which was subsequently lost.


Asunto(s)
Sustancias Macromoleculares/química , Methylococcaceae/fisiología , Pseudomonas aeruginosa/fisiología , Shewanella/fisiología , Vibrio cholerae/fisiología , Evolución Biológica , Quimiotaxis , Biología Computacional , Tomografía con Microscopio Electrónico , Escherichia coli/fisiología , Proteínas de Escherichia coli , Flagelos/fisiología , Gammaproteobacteria/fisiología , Genoma Bacteriano , Proteínas Quimiotácticas Aceptoras de Metilo/química , Filogenia
7.
FEMS Microbiol Lett ; 367(2)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32053143

RESUMEN

Numerous hemerythrins, di-iron proteins, have been identified in prokaryote genomes, but in most cases their function remains elusive. Bacterial hemerythrin homologs (bacteriohemerythrins, Bhrs) may contribute to various cellular functions, including oxygen sensing, metal binding and antibiotic resistance. It has been proposed that methanotrophic Bhrs support methane oxidation by supplying oxygen to a core enzyme, particulate methane monooxygenase. In this study, the consequences of the overexpression or deletion of the Bhr gene (bhr) in Methylomicrobiam alcaliphillum 20ZR were investigated. We found that the bhrknockout (20ZRΔbhr) displays growth kinetics and methane consumption rates similar to wild type. However, the 20ZRΔbhr accumulates elevated concentrations of acetate at aerobic conditions, indicating slowed respiration. The methanotrophic strain overproducing Bhr shows increased oxygen consumption and reduced carbon-conversion efficiency, while its methane consumption rates remain unchanged. These results suggest that the methanotrophic Bhr proteins specifically contribute to oxygen-dependent respiration, while they have minimal, if any, input of oxygen for the methane oxidation machinery.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hemeritrina/metabolismo , Metano/metabolismo , Methylococcaceae/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Hemeritrina/genética , Methylococcaceae/genética , Methylococcaceae/crecimiento & desarrollo
8.
Metab Eng ; 57: 1-12, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31626985

RESUMEN

Methylotuvimicrobium alcaliphilum 20Z is a promising platform strain for bioconversion of one-carbon (C1) substrates into value-added products. To carry out robust metabolic engineering with methylotrophic bacteria and to implement C1 conversion machinery in non-native hosts, systems-level evaluation and understanding of central C1 metabolism in methanotrophs under various conditions is pivotal but yet elusive. In this study, a genome-scale integrated approach was used to provide in-depth knowledge on the metabolic pathways of M. alcaliphilum 20Z grown on methane and methanol. Systems assessment of core carbon metabolism indicated the methanol assimilation pathway is mostly coupled with the efficient Embden-Meyerhof-Parnas (EMP) pathway along with the serine cycle. In addition, an incomplete TCA cycle operated in M. alcaliphilum 20Z on methanol, which might only supply precursors for de novo synthesis but not reducing powers. Instead, it appears that the direct formaldehyde oxidation pathway supply energy for the whole metabolic system. Additionally, a comparative transcriptomic analysis in multiple gammaproteobacterial methanotrophs also revealed the transcriptional responses of central metabolism on carbon substrate change. These findings provided a systems-level understanding of carbon metabolism and new opportunities for strain design to produce relevant products from different C1-feedstocks.


Asunto(s)
Ciclo del Ácido Cítrico/fisiología , Genoma Bacteriano , Glucólisis/fisiología , Metano/metabolismo , Metanol/metabolismo , Methylococcaceae , Carbono/metabolismo , Methylococcaceae/genética , Methylococcaceae/crecimiento & desarrollo
9.
Front Microbiol ; 9: 2735, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542328

RESUMEN

Background: Rare Earth Elements (REEs) control methanol utilization in both methane- and methanol-utilizing microbes. It has been established that the addition of REEs leads to the transcriptional repression of MxaFI-MeDH [a two-subunit methanol dehydrogenase (MeDH), calcium-dependent] and the activation of XoxF-MeDH (a one-subunit MeDH, lanthanum-dependent). Both enzymes are pyrroquinoline quinone-dependent alcohol dehydrogenases and show significant homology; however, they display different kinetic properties and substrate specificities. This study investigates the impact of the MxaFI to XoxF switch on the behavior of metabolic networks at a global scale. Results: In this study we investigated the steady-state growth of Methylomicrobium alcaliphilum 20ZR in media containing calcium (Ca) or lanthanum (La, a REE element). We found that cells supplemented with La show a higher growth rate compared to Ca-cultures; however, the efficiency of carbon conversion, estimated as biomass yield, is higher in cells grown with Ca. Three complementary global-omics approaches-RNA-seq transcriptomics, proteomics, and metabolomics-were applied to investigate the mechanisms of improved growth vs. carbon conversion. Cells grown with La showed the transcriptional activation of the xoxF gene, a homolog of the formaldehyde-activating enzyme (fae2), a putative transporter, genes for hemin-transport proteins, and nitrate reductase. In contrast, genes for mxaFI and associated cytochrome (mxaG) expression were downregulated. Proteomic profiling suggested additional adjustments of the metabolic network at the protein level, including carbon assimilation pathways, electron transport systems, and the tricarboxylic acid (TCA) cycle. Discord between gene expression and protein abundance changes points toward the possibility of post-transcriptional control of the related systems including key enzymes of the TCA cycle and a set of electron-transport carriers. Metabolomic data followed proteomics and showed the reduction of the ribulose-monophosphate (RuMP) pathway intermediates and the increase of the TCA cycle metabolites. Conclusion: Cells exposed to REEs display higher rates of growth but have lower carbon conversion efficiency compared to cells supplemented with Ca. The most plausible explanation for these physiological changes is an increased conversion of methanol into formate by XoxF-MeDH, which further stimulates methane oxidation but limits both the supply of reducing power and flux of formaldehyde into the RuMP pathway.

10.
Methods Enzymol ; 613: 349-383, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30509473

RESUMEN

Microbial methane utilization-a key node in the global carbon cycle-controls and often eliminates emission of methane into the atmosphere. The diversity and distribution of microbes capable of methane oxidation is astounding. However, from a biochemical point of view, only a very narrow set of unique enzymes underlies their metabolic capabilities. Despite this restriction, the successful integration of the enzymes into nonmethanotrophs, if judged by the ability of the trait to grow on methane, remains to be achieved. Failures and small victories with heterologous expression have highlighted a set of challenges linked to structure, compartmentalization, and regulation of the methanotrophic metabolic network. A better understanding of how these challenges are handled by cells of native methane-consuming bacteria is required. In this chapter we focus on key experimental aspects of working with native methanotrophic bacteria, including routine cultivation strategies, lab-scale bioreactor setups, genetic alteration, imaging, and basic -omic-level approaches.


Asunto(s)
Metano/metabolismo , Reactores Biológicos/microbiología , Methylococcaceae/metabolismo , Oxidación-Reducción
11.
Front Microbiol ; 9: 2610, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30429839

RESUMEN

Anaerobic digestion (AD) of waste substrates, and renewable biomass and crop residues offers a means to generate energy-rich biogas. However, at present, AD-derived biogas is primarily flared or used for combined heat and power (CHP), in part due to inefficient gas-to-liquid conversion technologies. Methanotrophic bacteria are capable of utilizing methane as a sole carbon and energy source, offering promising potential for biological gas-to-liquid conversion of AD-derived biogas. Here, we report cultivation of three phylogenetically diverse methanotrophic bacteria on biogas streams derived from AD of a series of energy crop residues. Strains maintained comparable central metabolic activity and displayed minimal growth inhibition when cultivated under batch configuration on AD biogas streams relative to pure methane, although metabolite analysis suggested biogas streams increase cellular oxidative stress. In contrast to batch cultivation, growth arrest was observed under continuous cultivation configuration, concurrent with increased biosynthesis and excretion of lactate. We examined the potential for enhanced lactate production via the employ of a pyruvate dehydrogenase mutant strain, ultimately achieving 0.027 g lactate/g DCW/h, the highest reported lactate specific productivity from biogas to date.

12.
Metab Eng ; 47: 323-333, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29673960

RESUMEN

Methane is considered a next-generation feedstock, and methanotrophic cell-based biorefinery is attractive for production of a variety of high-value compounds from methane. In this work, we have metabolically engineered Methylomicrobium alcaliphilum 20Z for 2,3-butanediol (2,3-BDO) production from methane. The engineered strain 20Z/pBudK.p, harboring the 2,3-BDO synthesis gene cluster (budABC) from Klebsiella pneumoniae, accumulated 2,3-BDO in methane-fed shake flask cultures with a titer of 35.66 mg/L. Expression of the most efficient gene cluster was optimized using selection of promoters, translation initiation rates (TIR), and the combination of 2,3-BDO synthesis genes from different sources. A higher 2,3-BDO titer of 57.7 mg/L was measured in the 20Z/pNBM-Re strain with budA of K. pneumoniae and budB of Bacillus subtilis under the control of the Tac promoter. The genome-scale metabolic network reconstruction of M. alcaliphilum 20Z enabled in silico gene knockout predictions using an evolutionary programming method to couple growth and 2,3-BDO production. The ldh, ack, and mdh genes in M. alcaliphilum 20Z were identified as potential knockout targets. Pursuing these targets, a triple-mutant strain ∆ldh ∆ack ∆mdh was constructed, resulting in a further increase of the 2,3-BDO titer to 68.8 mg/L. The productivity of this optimized strain was then tested in a fed-batch stirred tank bioreactor, where final product concentrations of up to 86.2 mg/L with a yield of 0.0318 g-(2,3-BDO) /g-CH4 were obtained under O2-limited conditions. This study first demonstrates the strategy of in silico simulation-guided metabolic engineering and represents a proof-of-concept for the production of value-added compounds using systematic approaches from engineered methanotrophs.


Asunto(s)
Butileno Glicoles/metabolismo , Ingeniería Metabólica , Metano/metabolismo , Methylococcaceae , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Klebsiella pneumoniae/genética , Methylococcaceae/genética , Methylococcaceae/metabolismo
13.
Sci Rep ; 8(1): 4753, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540803

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

14.
Trends Microbiol ; 26(8): 703-714, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29471983

RESUMEN

Methylotrophy is a field of study dealing with microorganisms capable of utilization of compounds devoid of carbon-carbon bonds (C1 compounds). In this review, we highlight several emerging trends in methylotrophy. First, we discuss the significance of the recent discovery of lanthanide-dependent alcohol dehydrogenases for understanding both the occurrence and the distribution of methylotrophy functions among bacteria, and then we discuss the newly appreciated role of lanthanides in biology. Next, we describe the detection of other methylotrophy pathways across novel bacterial taxa and insights into the evolution of methylotrophy. Further, data are presented on the occurrence and activity of aerobic methylotrophs in hypoxic and anoxic environments, questioning the prior assumptions on niche separation of aerobic and anaerobic methylotrophy. The concept of communal function in aerobic methane oxidation is also briefly discussed. Finally, we review recent research in engineering methylotrophs for biotechnological applications as well as recent progress in engineering synthetic methylotrophy.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Bacterias/metabolismo , Metano/metabolismo , Alcohol Deshidrogenasa/genética , Oxidorreductasas de Alcohol/genética , Anaerobiosis , Bacterias/genética , Ingeniería Genética , Elementos de la Serie de los Lantanoides/química , Oxidación-Reducción
15.
Sci Rep ; 8(1): 2512, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29410419

RESUMEN

Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20ZR an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization in M. alcaliphilum 20ZR. A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. The computational framework of C1-metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.


Asunto(s)
Metano/metabolismo , Metanol/metabolismo , Methylococcaceae/metabolismo , Acetilcoenzima A/metabolismo , Ciclo del Ácido Cítrico , Simulación por Computador , Redes y Vías Metabólicas , Metaboloma , Methylococcaceae/enzimología , Methylococcaceae/crecimiento & desarrollo , Vía de Pentosa Fosfato
16.
Environ Microbiol Rep ; 9(5): 492-500, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28772060

RESUMEN

Interpretation of bacteriohopanepolyol (BHP) biomarkers tracing microbiological processes in modern and ancient sediments relies on understanding environmental controls of production and preservation. BHPs from methanotrophs (35-aminoBHPs) were studied in methane-amended aerobic river-sediment incubations at different temperatures. It was found that: (i) With increasing temperature (4°C-40°C) a 10-fold increase in aminopentol (associated with Crenothrix and Methylobacter spp. growth) occurred with only marginal increases in aminotriol and aminotetrol; (ii) A further increase in temperature (50°C) saw selection for the thermophile Methylocaldum and mixtures of aminopentol and C-3 methylated aminopentol, again, with no increase in aminotriol and aminotetrol. (iii) At 30°C, more aminopentol and an aminopentol isomer and unsaturated aminopentol were produced after methanotroph growth and the onset of substrate starvation/oxygen depletion. (iv) At 50°C, aminopentol and C-3 methylated aminopentol, only accumulated during growth but were clearly resistant to remineralization despite cell death. These results have profound implications for the interpretation of aminoBHP distributions and abundances in modern and past environments. For instance, a temperature regulation of aminopentol production but not aminotetrol or aminotriol is consistent with and, corroborative of, observed aminopentol sensitivity to climate warming recorded in a stratigraphic sequence deposited during the Paleocene-Eocene thermal maximum (PETM).


Asunto(s)
Microbiología Ambiental , Metano/metabolismo , Methylococcaceae/clasificación , Methylococcaceae/fisiología , Viabilidad Microbiana , Temperatura , Ácidos Carboxílicos/metabolismo , Ambiente , Sedimentos Geológicos/microbiología
17.
Genome Announc ; 5(33)2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28818885

RESUMEN

The genomes of the aerobic methanotrophs "Methyloterricola oryzae" strain 73aT and Methylomagnum ishizawai strain 175 were sequenced. Both strains were isolated from rice plants. Methyloterricola oryzae strain 73aT represents the first isolate of rice paddy cluster I, and strain 175 is the second representative of the recently described genus Methylomagnum.

18.
PLoS One ; 11(11): e0165635, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27824887

RESUMEN

Aerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today. AMO bacteria are known to synthesise bacteriohopanepolyol (BHP) lipids. Preliminary evidence pointed towards 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) being a characteristic biomarker for Type I methanotrophs. Here, the BHP compositions were examined for species of the recently described novel Type I methanotroph bacterial genera Methylomarinum and Methylomarinovum, as well as for a novel species of a Type I Methylomicrobium. Aminopentol was the most abundant BHP only in Methylomarinovum caldicuralii, while Methylomicrobium did not produce aminopentol at all. In addition to the expected regular aminotriol and aminotetrol BHPs, novel structures tentatively identified as methylcarbamate lipids related to C-35 amino-BHPs (MC-BHPs) were found to be synthesised in significant amounts by some AMO cultures. Subsequently, sediments and authigenic carbonates from methane-influenced marine environments were analysed. Most samples also did not contain significant amounts of aminopentol, indicating that aminopentol is not a useful biomarker for marine aerobic methanotophic bacteria. However, the BHP composition of the marine samples do point toward the novel MC-BHPs components being potential new biomarkers for AMO.


Asunto(s)
Organismos Acuáticos/metabolismo , Ecosistema , Methylococcaceae/metabolismo , Aerobiosis , Biomarcadores/metabolismo , Ácidos Carboxílicos/metabolismo , Sedimentos Geológicos/análisis , Sedimentos Geológicos/microbiología , Lípidos/análisis , Metano/metabolismo
19.
Sci Rep ; 6: 21585, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26902345

RESUMEN

Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels.


Asunto(s)
Proteínas Bacterianas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/biosíntesis , Lactobacillus helveticus/genética , Metano/metabolismo , Methylococcaceae/metabolismo , Proteínas Bacterianas/genética , Biocatálisis , Reactores Biológicos , Fermentación , Expresión Génica , Cinética , L-Lactato Deshidrogenasa/genética , Lactobacillus helveticus/enzimología , Ingeniería Metabólica , Methylococcaceae/genética , Plásmidos/química , Plásmidos/metabolismo , Transformación Bacteriana , Transgenes
20.
Genome Announc ; 4(1)2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26798114

RESUMEN

The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...