Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202401657, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39005108

RESUMEN

A series of new luminescent bimetallic platinum(II) complexes with stimuli-responsive flexible Lewis pair (FlexLP) ligands are described. The FlexLP ligands consist of a dimesitylboron Lewis acid and diphenylphosphine oxide Lewis base which are in equilibrium between the unbound open form and the Lewis adduct, controlled by the hydrogen bond donating strength of the solvent. Spectroscopic techniques and density functional theory (DFT) calculations were used to interpret the photophysics of the platinum(II) complexes. All complexes exhibit tunable absorption in the region of 300-500 nm and green to orange photoluminescence, depending on the ratio of weak (THF) to strong (MeOH) hydrogen bond donating solvent employed. Spectroscopic and computational data shows that phosphine and peripheral acetylide ligands on the platinum(II) centers have limited influence on the emission energy, indicating the emission originates from the FlexLP-dominated fluorescence. Using time-resolved transient absorption spectroscopy it is shown that the complexes undergo intersystem crossing (ISC) to the triplet-excited state upon photoexcitation, and the ISC efficiency is affected by the peripheral acetylide ligands. The triplet-excited state lifetime can also be manipulated by the state of the FlexLP ligand, with the closed form complexes having longer lifetimes than the open form complexes.

2.
ChemSusChem ; : e202400611, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38932662

RESUMEN

Dye-sensitized photoelectrochemical cells can enable the production of molecules currently accessible through energetically demanding syntheses. Copper(I)-based dyes represent electronically tunable charge transfer and separation systems. Herein, we report a Cu(I)-bisdiimine donor-chromophore-acceptor dye with an absorbance in the visible part of the solar spectrum composed of a phenothiazine electron donor, and dipyrido[3,2-a:2',3'-c]phenazine electron acceptor. This complex is incorporated onto a zinc oxide nanowire semiconductor surface effectively forming a photoanode that is characterized spectroscopically and electrochemically. We investigate the photo-oxidation of hydroquinone, and the photosensitization of 2,2,6,6-tetramethylpiperidine-1-oxyl and N-hydroxyphthalimide for the oxidation of furfuryl alcohol to furfuraldehyde, resulting in near quantitative conversions, with poor selectivity to the alcohol.

3.
Dalton Trans ; 53(14): 6367-6376, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38497406

RESUMEN

Dye-sensitized photoelectrodes may be used as heterogeneous components for fuel-forming reactions in photoelectrochemical cells. There has been increasing interest in developing Earth-abundant cheaper photosensitizers based on first-row transition metals. We describe here the synthesis, characterization, and study of the ground and excited state properties of three Cu(I) complexes bearing ligands with varying electron-accepting capacities and conjugation that may act as photosensitizers for wide bandgap semiconductors. Femtosecond transient absorption studies indicate that the nature of the final excited state is dictated by the extent of conjugation in the electron-accepting ligand, where shorter conjugation leads to the formation of a singly reduced ligand and longer conjugation leads to the formation of a ligand-centered final excited state. These complexes were surface anchored onto nanostructured NiO on conductive fluorine-doped tin oxide glass to fabricate photocathodes. It was found that even though the ligands with increasing conjugation have an effect on the formation of the final excited state in solution, all complexes exhibit similar photocurrents upon white light illumination, suggesting that charge transfer to NiO happens in advance of the formation of the final excited state.

4.
Environ Sci Technol ; 57(39): 14548-14557, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37729583

RESUMEN

Smoke particles generated by burning biomass consist mainly of organic aerosol termed biomass burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e., the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases at room temperature using a photobleaching method and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. We use the Vogel-Fulcher-Tamman equation to extrapolate our results to colder and warmer temperatures, and based on the extrapolation, the hydrophobic phase is predicted to be glassy (viscosity >1012 Pa s) for temperatures less than 230 K and RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multilayer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modeling studies. Hence, the presence of two phases can lead to an increase in the predicted warming effect of BBOA on the climate.


Asunto(s)
Atmósfera , Carbono , Viscosidad , Biomasa , Atmósfera/química , Aerosoles
5.
Sci Rep ; 13(1): 12745, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550311

RESUMEN

Material quality plays a critical role in the performance of nanometer-scale plasmonic structures and represents a significant hurdle to large-scale device integration. Progress has been hindered by the challenges of realizing scalable, high quality, ultrasmooth metal deposition strategies, and by the poor pattern transfer and device fabrication yields characteristic of most metal deposition approaches which yield polycrystalline metal structure. Here we highlight a novel and scalable electrochemical method to deposit ultrasmooth, single-crystal (100) gold and to fabricate a series of bowtie nanoantennas through subtractive nanopatterning. We investigate some of the less well-explored design and performance characteristics of these single-crystal nanoantennas in relation to their polycrystalline counterparts, including pattern transfer and device yield, polarization response, gap-field magnitude, and the ability to model accurately the antenna local field response. Our results underscore the performance advantages of single-crystal nanoscale plasmonic materials and provide insight into their use for large-scale manufacturing of plasmon-based devices. We anticipate that this approach will be broadly useful in applications where local near-fields can enhance light-matter interactions, including for the fabrication of optical sensors, photocatalytic structures, hot carrier-based devices, and nanostructured noble metal architectures targeting nano-attophysics.

6.
Sci Rep ; 13(1): 8385, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225861

RESUMEN

Pulp fibre reinforced cement (fibre cement) has the potential to become a forerunner in mitigating the carbon dioxide (CO2) footprint of non-structural materials for residential and commercial structures. However, one of the significant bottlenecks in fibre cement is its poor chemical stability in the alkaline cement matrix. To date, probing the health of pulp fibre in cement is lengthy and laborious, requiring mechanical and chemical separations. In this study, we have demonstrated that it is possible to understand the chemical interactions at the fibre-cement interfaces by tracking lignin in a solid state without using any additional chemicals. For the first time, multidimensional fluorometry is employed for the rapid assessment of the structural change (degradation) of lignin in fibre cement as an indicator of pulp fibre health; providing an excellent platform for the germination of resilient fibre cement with high content of natural lignocellulosic fibre.

7.
Light Sci Appl ; 12(1): 99, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185262

RESUMEN

Nanophotonics research has focused recently on the ability of nonlinear optical processes to mediate and transform optical signals in a myriad of novel devices, including optical modulators, transducers, color filters, photodetectors, photon sources, and ultrafast optical switches. The inherent weakness of optical nonlinearities at smaller scales has, however, hindered the realization of efficient miniaturized devices, and strategies for enhancing both device efficiencies and synthesis throughput via nanoengineering remain limited. Here, we demonstrate a novel mechanism by which second harmonic generation, a prototypical nonlinear optical phenomenon, from individual lithium niobate particles can be significantly enhanced through nonradiative coupling to the localized surface plasmon resonances of embedded gold nanoparticles. A joint experimental and theoretical investigation of single mesoporous lithium niobate particles coated with a dispersed layer of ~10 nm diameter gold nanoparticles shows that a ~32-fold enhancement of second harmonic generation can be achieved without introducing finely tailored radiative nanoantennas to mediate photon transfer to or from the nonlinear material. This work highlights the limitations of current strategies for enhancing nonlinear optical phenomena and proposes a route through which a new class of subwavelength nonlinear optical platforms can be designed to maximize nonlinear efficiencies through near-field energy exchange.

8.
Chem Sci ; 13(8): 2296-2302, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35310486

RESUMEN

Energy transfer (EnT) is a fundamental activation process in visible-light-promoted photocycloaddition reactions. This work describes the performance of imidazoacridine-based TADF materials for visible-light mediated triplet-triplet EnT photocatalysis. The TADF material ACR-IMAC has been discovered as an inexpensive, high-performance organic alternative to the commonly used metal-based photosensitizers for visible-light EnT photocatalysis. The efficiency of ACR-IMAC as a photosensitizer is comparable with Ir-based photosensitizers in both intra- and intermolecular [2 + 2] cycloadditions. ACR-IMAC mediated both dearomative and non-dearomative [2 + 2] cycloadditions in good yields, with high regio- and diastereocontrol. Cyclobutane-containing bi- tri- and tetracylic scaffolds were successfully prepared, with broad tolerance toward functional groups relevant to drug discovery campaigns. Fluorescence quenching experiments, time-correlated single-photon counting, and transient absorption spectroscopy were also conducted to provide insight into the reaction and evidence for an EnT mechanism.

9.
J Am Chem Soc ; 143(41): 16976-16992, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34618454

RESUMEN

Semiconducting polymer dots (Pdots) have emerged as versatile probes for bioanalysis and imaging at the single-particle level. Despite their utility in multiplexed analysis, deep blue Pdots remain rare due to their need for high-energy excitation and sensitivity to photobleaching. Here, we describe the design of deep blue fluorophores using structural constraints to improve resistance to photobleaching, two-photon absorption cross sections, and fluorescence quantum yields using the hexamethylazatriangulene motif. Scanning tunneling microscopy was used to characterize the electronic structure of these chromophores on the atomic scale as well as their intrinsic stability. The most promising fluorophore was functionalized with a polymerizable acrylate handle and used to give deep-blue fluorescent acrylic polymers with Mn > 18 kDa and D < 1.2. Nanoprecipitation with amphiphilic polystyrene-graft-(carboxylate-terminated poly(ethylene glycol)) gave water-soluble Pdots with blue fluorescence, quantum yields of 0.81, and molar absorption coefficients of (4 ± 2) × 108 M-1 cm-1. This high brightness facilitated single-particle visualization with dramatically improved signal-to-noise ratio and photobleaching resistance versus an unencapsulated dye. The Pdots were then conjugated with antibodies for immunolabeling of SK-BR3 human breast cancer cells, which were imaged using deep blue fluorescence in both one- and two-photon excitation modes.

10.
Angew Chem Int Ed Engl ; 60(34): 18630-18638, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34133838

RESUMEN

Near-infrared-emitting polymers were prepared using four boron-difluoride-curcuminoid-based monomers using ring-opening metathesis polymerization (ROMP). Well-defined polymers with molecular weights of ≈20 kDa and dispersities <1.07 were produced and exhibited near-infrared (NIR) emission in solution and in the solid state with photoluminescence quantum yields (ΦPL ) as high as 0.72 and 0.18, respectively. Time-resolved emission spectroscopy revealed thermally activated delayed fluorescence (TADF) in polymers containing highly planar dopants, whereas room-temperature phosphorescence dominated with twisted species. Density functional theory demonstrated that rotation about the donor-acceptor linker can give rise to TADF, even where none would be expected based on calculations using ground-state geometries. Incorporation of TADF-active materials into water-soluble polymer dots (Pdots) gave NIR-emissive nanoparticles, and conjugation of these Pdots with antibodies enabled immunofluorescent labeling of SK-BR3 human breast-cancer cells.


Asunto(s)
Compuestos de Boro/química , Neoplasias de la Mama/diagnóstico por imagen , Diarilheptanoides/química , Colorantes Fluorescentes/química , Imagen Óptica , Polímeros/química , Línea Celular Tumoral , Teoría Funcional de la Densidad , Femenino , Colorantes Fluorescentes/síntesis química , Humanos , Rayos Infrarrojos , Estructura Molecular , Polímeros/síntesis química
11.
Arch Bone Jt Surg ; 8(6): 682-688, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33313348

RESUMEN

BACKGROUND: The vertebral column is the second most common fracture site in individuals with high-grade osteoporosis (30-50%). Most of these fractures are caused by falls. This information reveals the importance of considering impact loading conditions of spinal motion segments, while no commercial apparatus is available for this purpose. Therefore, the goal was set to fabricate an impact testing device for the measurement of impact behavior of the biological tissues. METHODS: In the present study, first, a drop-weight impact testing apparatus was designed and fabricated to record both force and displacement at a sample rate of 100 kHz. A load cell was placed under the sample, and an accelerometer was located on the impactor. Previous devices have mostly measured the force and not the deformation. Thereafter, the effect of high axial compression load was investigated on a biological sample, i.e., the lumbar motion segment, was investigated. To this end, nine ovine segments subjected to vertical impact load were examined using the fabricated device, and the mechanical properties of the lumbar segments were extracted and later compared with quasi-static loading results. RESULTS: The results indicated that the specimen stiffness and failure energy in impact loading were higher than those in the quasi-static loading. In terms of the damage site, fracture mainly occurred in the body of the vertebra during impact loading; although, during quasi-static loading, the fracture took place in the endplates. CONCLUSION: The present study introduces an inexpensive drop-test device capable of recording both the force and the deformation of the biological specimens when subjected to high-speed impacts. The mechanical properties of the spinal segments have also been extracted and compared with quasi-static loading results.

12.
ACS Nano ; 14(6): 7581-7592, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32401491

RESUMEN

The confinement of spatially extended electromagnetic waves to nanometer-scale metal structures can be harnessed for application in information processing, energy harvesting, sensing, and catalysis. Metal nanostructures enable negative refractive index, subwavelength resolution imaging, and patterning through engineered metamaterials and promise technologies that will operate in the quantum plasmonics regime. However, the controlled fabrication of high-definition single-crystal subwavelength metal nanostructures has remained a significant hurdle due to the tendency for polycrystalline metal growth using conventional physical vapor deposition methods and the challenges associated with placing solution-grown nanocrystals in desired orientations and locations on a surface to manufacture functional devices. Here, we introduce a scalable and green wet chemical approach to monocrystalline noble metal thin films and nanostructures. The method enables the fabrication of ultrasmooth, epitaxial, single-crystal films of controllable thickness that are ideal for the subtractive manufacture of nanostructures through ion beam milling and additive crystalline nanostructure via lithographic patterning for large-area, single-crystal metasurfaces and high aspect ratio nanowires. Our single-crystal nanostructures demonstrate improved feature quality, pattern transfer yield, reduced optical and resistive losses, and tailored local fields to yield greater optical response and improved stability compared to those of polycrystalline structures-supporting greater local field enhancements and enabling practical advances at the nanoscale.

13.
J Phys Chem A ; 124(11): 2301-2308, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32078327

RESUMEN

Diffusion coefficients in mixtures of organic molecules and water are needed for many applications, ranging from the environmental modeling of pollutant transport, air quality, and climate, to improving the stability of foods, biomolecules, and pharmaceutical agents for longer use and storage. The Stokes-Einstein relation has been successful for predicting diffusion coefficients of large molecules in organic-water mixtures from viscosity, yet it routinely underpredicts, by orders of magnitude, the diffusion coefficients of small molecules in organic-water mixtures. Herein, a unified description of diffusion coefficients of large and small molecules in organic-water mixtures, based on the fractional Stokes-Einstein relation, is presented. A fractional Stokes-Einstein relation is able to describe 98% of the observed diffusion coefficients from small to large molecules, roughly within the uncertainties of the measurements. The data set used in the analysis includes a wide range of radii of diffusing molecules, viscosities, and intermolecular interactions. As a case study, we show that the degradation of polycyclic aromatic hydrocarbons (PAHs) by O3 within organic-water particles in the planetary boundary layer is relatively short (≲1 day) when the viscosity of the particle is ≲102 Pa s. We also show that the degradation times predicted using the Stokes-Einstein relation and the fractional Stokes-Einstein relation can differ by up to a factor of 10 in this region of the atmosphere.

14.
J Phys Chem Lett ; 10(19): 5902-5908, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31517491

RESUMEN

Knowledge of diffusion coefficients as a function of temperature in secondary organic aerosol (SOA) or proxies of SOA is needed to predict atmospheric chemistry, climate, and air quality. We determined diffusion coefficients as a function of temperature of a fluorescent organic molecule in a sucrose matrix (a proxy for SOA). Diffusion coefficients were a strong function of temperature (e.g., at water activity = 0.43, diffusion coefficients decreased by a factor of ∼40 as the temperature decreased by 20 K). Interestingly, the apparent activation energy for diffusion of the fluorescent organic molecule was similar to the apparent activation for diffusion of water in the sucrose matrix. On the basis of these measurements, the mixing time of organic molecules by diffusion in some types of SOA particles will often be >1 h in the free troposphere, if a sucrose matrix is an accurate proxy for these types of SOA.

15.
Nanotechnology ; 24(41): 415302, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24045766

RESUMEN

This work studies in detail the effect of femtosecond laser irradiation process parameters (fluence and scanning speed) on the hydrophobicity of the resulting micro/nano-patterned morphologies on stainless steel. Depending on the laser parameters, four distinctly different nano-patterns were produced, namely nano-rippled, parabolic-pillared, elongated sinusoidal-pillared and triple roughness nano-structures. All of the produced structures were classified according to a newly defined parameter, the laser intensity factor (LIF); by increasing the LIF, the ablation rate and periodicity of the asperities increase. In order to decrease the surface energy, all of the surfaces were coated with a fluoroalkylsilane agent. Analysis of the wettability revealed enhanced superhydrophobicity for most of these structures, particularly those possessing the triple roughness pattern that also exhibited low contact angle hysteresis. The high permanent superhydrophobicity of this pattern is due to the special micro/nano-structure of the surface that facilitates the Cassie-Baxter state.

16.
Proc Natl Acad Sci U S A ; 109(33): 13188-93, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22847443

RESUMEN

A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5).

17.
Phys Rev Lett ; 90(23): 237005, 2003 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-12857284

RESUMEN

There has long been a discrepancy between microwave conductivity measurements in high temperature superconductors and the conductivity spectrum expected in the simplest models for impurity scattering in a d-wave superconductor. Here we present a new type of broadband measurement of microwave surface resistance that finally shows some of the spectral features expected for a d(x2-y2) pairing state. Cusp-shaped conductivity spectra, consistent with weak impurity scattering of nodal quasiparticles, were obtained in the 0.6-21 GHz frequency range in highly ordered crystals of YBa2Cu3O6.50 and YBa2Cu3O6.99.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...