Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Reprod Dev ; 67(6): 369-379, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34615840

RESUMEN

Post-mitotic neurons do exhibit DNA methylation changes, contrary to the longstanding belief that the epigenetic pattern in terminally differentiated cells is essentially unchanged. While the mechanism and physiological significance of DNA demethylation in neurons have been extensively elucidated, the occurrence of de novo DNA methylation and its impacts have been much less investigated. In the present study, we showed that neuronal activation induces de novo DNA methylation at enhancer regions, which can repress target genes in primary cultured hippocampal neurons. The functional significance of this de novo DNA methylation was underpinned by the demonstration that inhibition of DNA methyltransferase (DNMT) activity decreased neuronal activity-induced excitatory synaptogenesis. Overexpression of WW and C2 domain-containing 1 (Wwc1), a representative target gene of de novo DNA methylation, could phenocopy this DNMT inhibition-induced decrease in synaptogenesis. We found that both DNMT1 and DNMT3a were required for neuronal activity-induced de novo DNA methylation of the Wwc1 enhancer. Taken together, we concluded that neuronal activity-induced de novo DNA methylation that affects gene expression has an impact on neuronal physiology that is comparable to that of DNA demethylation. Since the different requirements of DNMTs for germ cell and embryonic development are known, our findings also have considerable implications for future studies on epigenomics in the field of reproductive biology.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Neuronas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos
2.
Essays Biochem ; 65(4): 697-708, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34328174

RESUMEN

Increasing evidence has shown that many long non-coding RNAs (lncRNAs) are involved in gene regulation in a variety of ways such as transcriptional, post-transcriptional and epigenetic regulation. Promoter-associated non-coding RNAs (pancRNAs), which are categorized into the most abundant single-copy lncRNA biotype, play vital regulatory roles in finely tuning cellular specification at the epigenomic level. In short, pancRNAs can directly or indirectly regulate downstream genes to participate in the development of organisms in a cell-specific manner. In this review, we will introduce the evolutionarily acquired characteristics of pancRNAs as determined by comparative epigenomics and elaborate on the research progress on pancRNA-involving processes in mammalian embryonic development, including neural differentiation.


Asunto(s)
Epigénesis Genética , ARN Largo no Codificante , Animales , Femenino , Mamíferos/genética , Embarazo , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , ARN no Traducido/genética
3.
J Virol ; 95(14): e0052821, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33910952

RESUMEN

Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae, is still an important cause of childhood morbidity and mortality worldwide. MeV usually causes acute febrile illness with skin rash, but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). The disease is fatal, and no effective therapy is currently available. Although transsynaptic cell-to-cell transmission is thought to account for MeV propagation in the brain, neurons do not express the known receptors for MeV. Recent studies have shown that hyperfusogenic changes in the MeV fusion (F) protein play a key role in MeV propagation in the brain. However, how such mutant viruses spread in neurons remains unexplained. Here, we show that cell adhesion molecule 1 (CADM1; also known as IGSF4A, Necl-2, and SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, SynCAM2) are host factors that enable MeV to cause membrane fusion in cells lacking the known receptors and to spread between neurons. During enveloped virus entry, a cellular receptor generally interacts in trans with the attachment protein on the envelope. However, CADM1 and CADM2 interact in cis with the MeV attachment protein on the same cell membrane, causing the fusion protein triggering and membrane fusion. Knockdown of CADM1 and CADM2 inhibits syncytium formation and virus transmission between neurons that are both mediated by hyperfusogenic F proteins. Thus, our results unravel the molecular mechanism (receptor-mimicking cis-acting fusion triggering) by which MeV spreads transsynaptically between neurons, thereby causing SSPE. IMPORTANCE Measles virus (MeV), an enveloped RNA virus, is the causative agent of measles, which is still an important cause of childhood morbidity and mortality worldwide. Persistent MeV infection in the brain causes a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. However, how MeV spreads in neurons, which are mainly affected in SSPE, remains largely unknown. In this study, we demonstrate that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV spread between neurons. During enveloped virus entry, a cellular receptor generally interacts in trans with the attachment protein on the viral membrane (envelope). Remarkably, CADM1 and CADM2 interact in cis with the MeV attachment protein on the same membrane, triggering the fusion protein and causing membrane fusion, as viral receptors usually do in trans. Careful screening may lead to more examples of such "receptor-mimicking cis-acting fusion triggering" in other viruses.


Asunto(s)
Molécula 1 de Adhesión Celular/fisiología , Moléculas de Adhesión Celular/fisiología , Virus del Sarampión/patogenicidad , Panencefalitis Esclerosante Subaguda/virología , Internalización del Virus , Animales , Línea Celular , Chlorocebus aethiops , Células Gigantes/virología , Humanos , Ratones , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/metabolismo
4.
Stem Cell Res ; 44: 101749, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32151953

RESUMEN

Evolutionary developmental biology of our closest living relative, the chimpanzee (Pan troglodytes), is essential for understanding the origin of human traits. However, it is difficult to access developmental events in the chimpanzee in vivo because of technical and ethical restrictions. Induced pluripotent stem cells (iPSCs) offer an alternative in vitro model system to investigate developmental events by overcoming the limitations of in vivo study. Here, we generated chimpanzee iPSCs from adult skin fibroblasts and reconstructed early neural development using in vitro differentiation culture conditions. Chimpanzee iPSCs were established using straightforward methods, namely, lipofection of plasmid vectors carrying human reprogramming factors, combined with maintenance in a comprehensive feeder-free culture. Ultimately, direct neurosphere formation culture induced rapid and efficient differentiation of neural stem cells from chimpanzee iPSCs. Time course analysis of neurosphere formation demonstrated ontogenetic changes in gene expression profiles and developmental potency along an early neural development path from epiblasts to radial glia. Our iPSC culture system is a potent tool for investigating the molecular and cellular foundation underlying chimpanzee early neural development and better understanding of human brain evolution.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular , Reprogramación Celular , Fibroblastos , Humanos , Neurogénesis , Pan troglodytes
5.
J Neurosci ; 38(20): 4791-4810, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29695415

RESUMEN

Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-ß (TGF-ß) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-ß family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-ß family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-ß receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-ß signaling is involved in the pathogenesis of neurodevelopmental diseases.SIGNIFICANCE STATEMENT Canonical transforming growth factor-ß (TGF-ß) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-ß signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-ß signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-ß/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders.


Asunto(s)
Proteínas de Homeodominio/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Morfogénesis/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Proteínas Represoras/fisiología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Animales , Axones/efectos de los fármacos , Células Cultivadas , Dendritas/efectos de los fármacos , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Mutación/genética , Proteínas del Tejido Nervioso/genética , Enfermedades del Sistema Nervioso/genética , Células-Madre Neurales , Embarazo , Proteínas Represoras/genética , Proteína Smad4/genética , Proteína Smad4/fisiología
6.
Cell Tissue Res ; 371(1): 189-199, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28695279

RESUMEN

Severe spinal cord injury (SCI) leads to almost complete neural cell loss at the injured site, causing the irreversible disruption of neuronal circuits. The transplantation of neural stem or precursor cells (NS/PCs) has been regarded as potentially effective for SCI treatment because NS/PCs can compensate for the injured sites by differentiating into neurons and glial cells (astrocytes and oligodendrocytes). An understanding of the molecular mechanisms that regulate the proliferation, fate specification and maturation of NS/PCs and their progeny would facilitate the establishment of better therapeutic strategies for regeneration after SCI. In recent years, several studies of SCI animal models have demonstrated that the modulation of specific epigenetic marks by histone modifiers and non-coding RNAs directs the setting of favorable cellular environments that promote the neuronal differentiation of NS/PCs and/or the elongation of the axons of the surviving neurons at the injured sites. In this review, we provide an overview of recent progress in the epigenetic regulation/manipulation of neural cells for the treatment of SCI.


Asunto(s)
Epigénesis Genética , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Neurogénesis/genética , Traumatismos de la Médula Espinal/terapia , Regeneración de la Medula Espinal , Trasplante de Células Madre , Animales , Astrocitos/citología , Modelos Animales de Enfermedad , Humanos , Ratones , Células-Madre Neurales/citología , Neuronas/citología , Oligodendroglía/citología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...