Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Kidney Int ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901606

RESUMEN

Microplastics (MPs) and nanoplastics are small synthetic organic polymer particles (<5 mm and <1 µm, respectively) that originate directly from plastic compounds or result from the degradation of plastic. These particles are a global concern because they are widely distributed in water, air, food, and soil, and recent scientific evidence has linked MPs to negative biological effects. Although these particles are difficult to detect in humans, MPs have been identified in different biological fluids and tissues, such as the placenta, lung, intestines, liver, blood, urine, and kidneys. Human exposure to MPs can occur by ingestion, inhalation, or dermal contact, potentially causing metabolic alterations. Data from experimental and clinical studies have revealed that the ability of MPs to promote inflammation, oxidative stress, and organ dysfunction and negatively affect clinical outcomes is associated with their accumulation in body fluids and tissues. Although evidence of the putative action of MPs in the human kidney is still scarce, there is growing interest in studying MPs in this organ. In addition, chronic kidney disease requires investigation because this condition is potentially prone to MP accumulation. The purpose of the present article is (i) to review the general aspects of MP generation, available analytic methods for identification, and the main known biological toxic effects; and (ii) to describe and critically analyze key experimental and clinical studies that support a role of MPs in kidney disease.

2.
Clin Kidney J ; 17(4): sfae046, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572502

RESUMEN

Background: The association between hypo- and/or hypermagnesaemia and cardiovascular (CV) outcomes or mortality has shown conflicting results in chronic kidney disease (CKD) and has been conducted on total magnesium (tMg) levels. Thus, the objectives of the present study were to (i) describe the serum ionized Mg (iMg) concentration in patients at various CKD stages, (ii) measure the correlation between iMg and tMg concentrations, (iii) identify their associated factors and (iv) determine whether serum tMg and/or iMg concentrations are associated with major adverse cardiovascular events (MACE) and mortality before kidney replacement therapy in CKD patients. Methods: Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) is a prospective cohort of CKD patients with an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. Baseline iMg and tMg serum concentrations were centrally measured. Adjusted cause-specific Cox proportional hazard models were used to estimate hazard ratios (HRs) for first MACE and for mortality. Results: Of the 2419 included patients, median age was 68 years, and the mean eGFR was 34.8 mL/min/1.73 m2. Concentrations of serum iMg and tMg were strongly correlated (r = 0.89, P < .001) and were independently associated with eGFR. The adjusted HR [95% confidence interval (CI)] for MACE associated with the baseline serum tMg level was 1.27 (0.95; 1.69) for patients in Tertile 1 and 1.56 (1.18; 2.06) for patients in Tertile 3, relative to patients in Tertile 2. The HR (95% CI) of death according to serum tMg concentration was increased in Tertile 3 [1.48 (1.11; 1.97)]. The adjusted risk for MACE and mortality (all-cause or CV) associated with the baseline serum iMg level was not significantly different between tertiles. Conclusions: Our analysis of a large cohort of patients with moderate-to-advanced CKD demonstrated that individuals with higher serum tMg concentrations, although still within the normal range, had a greater likelihood of MACE and mortality. However, serum iMg levels were not associated with these outcomes.

3.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003343

RESUMEN

After acute kidney injury (AKI), renal function continues to deteriorate in some patients. In a pro-inflammatory and profibrotic environment, the proximal tubules are subject to maladaptive repair. In the AKI-to-CKD transition, impaired recovery from AKI reduces tubular and glomerular filtration and leads to chronic kidney disease (CKD). Reduced kidney secretion capacity is characterized by the plasma accumulation of biologically active molecules, referred to as uremic toxins (UTs). These toxins have a role in the development of neurological, cardiovascular, bone, and renal complications of CKD. However, UTs might also cause CKD as well as be the consequence. Recent studies have shown that these molecules accumulate early in AKI and contribute to the establishment of this pro-inflammatory and profibrotic environment in the kidney. The objective of the present work was to review the mechanisms of UT toxicity that potentially contribute to the AKI-to-CKD transition in each renal compartment.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Toxinas Biológicas , Humanos , Tóxinas Urémicas , Insuficiencia Renal Crónica/complicaciones , Riñón
4.
Front Cardiovasc Med ; 10: 1227589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781314

RESUMEN

Introduction: Calcification is a main cause of bioprosthetic heart valves failure. It may be promoted by the inflammation developed in the glutaraldehyde (GA)-fixed cusps of the bioprosthesis. We tested the hypothesis that antagonizing the C-X-C chemokines receptor 2 (CXCR2) may prevent the calcification of GA-fixed porcine aortic valves. Materiel and methods: Four-week-old Sprague Dawley males were transplanted with 2 aortic valve cusps isolated from independent pigs and implanted into the dorsal wall. Four groups of 6 rats were compared: rats transplanted with GA-free or GA-fixed cusps and rats transplanted with GA-fixed cusps and treated with 1 mg/kg/day SCH5217123 (a CXCR2 antagonist) intraperitoneally (IP) or subcutaneously (SC) around the xenograft, for 14 days. Then, rats underwent blood count before xenografts have been explanted for histology and biochemistry analyses. Results: A strong calcification of the xenografts was induced by GA pre-incubation. However, we observed a significant decrease in this effect in rats treated with SCH527123 IP or SC. Implantation of GA-fixed cusps was associated with a significant increase in the white blood cell count, an effect that was significantly prevented by SCH527123. In addition, the expression of the CD3, CD68 and CXCR2 markers was reduced in the GA-fixed cusps explanted from rats treated with SCH527123 as compared to those explanted from non-treated rats. Conclusion: The calcification of GA-fixed porcine aortic valve cusps implanted subcutaneously in rats was significantly prevented by antagonizing CXCR2 with SCH527123. This effect may partly result from an inhibition of the GA-induced infiltration of T-cells and macrophages into the xenograft.

5.
Cardiovasc Res ; 119(13): 2355-2367, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37517061

RESUMEN

AIMS: Inflammatory cytokines play a critical role in the progression of calcific aortic valve disease (CAVD), for which there is currently no pharmacological treatment. The aim of this study was to test the hypothesis that interleukin-8 (IL-8), known to be involved in arterial calcification, also promotes aortic valve calcification (AVC) and to evaluate whether pharmacologically blocking the IL-8 receptor, CXC motif chemokine receptor 2 (CXCR2), could be effective in preventing AVC progression. METHODS AND RESULTS: A cohort of 195 patients (median age 73, 74% men) diagnosed with aortic valve stenosis (severe in 16.9% of cases) were prospectively followed by CT for a median time of 2.6 years. A Cox proportional hazards regression analysis indicated that baseline IL-8 serum concentrations were associated with rapid progression of AVC, defined as an annualized change in the calcification score by CT ≥ 110 AU/year, after adjustment for age, gender, bicuspid anatomy, and baseline disease severity. In vitro, exposure of primary human aortic valvular interstitial cells (hVICs) to 15 pg/mL IL-8 induced a two-fold increase in inorganic phosphate (Pi)-induced calcification. IL-8 promoted NFκB pathway activation, MMP-12 expression, and elastin degradation in hVICs exposed to Pi. These effects were prevented by SCH527123, an antagonist of CXCR2. The expression of CXCR2 was confirmed in hVICs and samples of aortic valves isolated from patients with CAVD, in which the receptor was mainly found in calcified areas, along with MMP-12 and a degraded form of elastin. Finally, in a rat model of chronic kidney disease-associated CAVD, SCH527123 treatment (1 mg/kg/day given orally for 11 weeks) limited the decrease in aortic cusp separation, the increase in maximal velocity of the transaortic jet, and the increase in aortic mean pressure gradient measured by echocardiography, effects that were associated with a reduction in hydroxyapatite deposition and MMP-12 expression in the aortic valves. CONCLUSION: Overall, these results highlight, for the first time, a significant role for IL-8 in the progression of CAVD by promoting calcification via a CXCR2- and MMP-12-dependent mechanism that leads to elastin degradation, and identify CXCR2 as a promising therapeutic target for the treatment of CAVD.

6.
Clin Chim Acta ; 548: 117498, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482192

RESUMEN

BACKGROUND AND AIMS: Vitamin K antagonists (VKAs) are the first-line anticoagulants used in end stage renal disease. This population experiences a significant variability in their International Normalized Ratio (INR) over time. There is a need for methods allowing the study of the pharmacokinetics of free and total concentrations of VKAs to explain INR variability. MATERIALS AND METHODS: We developed and validated a high-performance liquid chromatography-tandem mass spectrometry method allowing the quantification of warfarin and fluindione free and total plasma concentrations. Chromatographic separation was achieved in a raptor biphenyl column and the spectrometry acquisition was set in multiple reaction monitoring mode after negative electrospray ionization. We then applied it in describing the plasma free and total concentrations of VKAs in samples from 50 hemodialysis patients. RESULTS: The developed method is rapid, sensitive and specific. Our cohort results showed a correlation between free and total VKA concentrations. The free VKA concentrations tended to be higher in patients with higher INR. Although VKAs are highly albumin-bound drugs, albumin concentration did not totally explain the high inter-individual total VKA concentrations variability. CONCLUSION: This opens the door to further studies to understand the factors involved in their variability.


Asunto(s)
Espectrometría de Masas en Tándem , Warfarina , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Anticoagulantes , Diálisis Renal , Reproducibilidad de los Resultados
7.
Nephrol Dial Transplant ; 38(12): 2776-2785, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37248048

RESUMEN

BACKGROUND: Rapid progression of aortic stenosis (AS) has been observed in patients undergoing dialysis, but existing cross-sectional evidence is contradictory in non-dialysis-dependent chronic kidney disease (CKD). The present study sought to evaluate whether CKD is associated with the progression of AS over time in a large cohort of patients with AS. METHODS: We retrospectively studied all consecutive patients diagnosed with AS [peak aortic jet velocity (Vmax) ≥2.5 m/s] and left ventricular ejection fraction ≥50% in the echocardiography laboratories of two tertiary centers between 2000 and 2018. The estimated glomerular filtration rate (eGFR) (mL/min/1.73 m2) was calculated from serum creatinine values. Patients were divided into five CKD stages according to the baseline eGFR. Annual rates of change in the aortic valve area (AVA) were determined by a linear mixed-effects model. RESULTS: Among the 647 patients included, 261 (40%) had CKD. After a median follow-up of 2.9 (interquartile range 1.8-4.8) years, the mean overall rate of change in AVA was -0.077 (95% confidence interval -0.082; -0.073) cm2/year. There was an inverse relationship between the progression rate and kidney function. The more severe the CKD stage, the greater the AVA narrowing (P < .001). By multivariable linear regression analysis, the eGFR was also negatively associated (P < .001) with AS progression. An eGFR strata below 45 mL/min/1.73 m2 was associated with higher odds of rapid progression of AS than normal kidney function. During the clinical follow-up, event-free survival (patients free of aortic valve replacement or death) decreased as CKD progressed. Rapid progression of AS in patients with kidney dysfunction was associated with worse outcomes. CONCLUSIONS: Patients with CKD exhibit more rapid progression of AS over time and require close monitoring. The link between kidney dysfunction and rapid progression of AS is still unknown and requires further research.


Asunto(s)
Estenosis de la Válvula Aórtica , Insuficiencia Renal Crónica , Insuficiencia Renal , Humanos , Volumen Sistólico , Estudios Retrospectivos , Estudios Transversales , Diálisis Renal , Función Ventricular Izquierda , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Estenosis de la Válvula Aórtica/complicaciones , Válvula Aórtica/cirugía , Factores de Riesgo , Insuficiencia Renal/complicaciones , Tasa de Filtración Glomerular , Progresión de la Enfermedad
8.
J Mol Cell Cardiol ; 179: 18-29, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36967106

RESUMEN

BACKGROUND: Calcific aortic stenosis (CAS) is more prevalent, occurs earlier, progresses faster and has worse outcomes in patients with chronic kidney disease (CKD). The uremic toxin indoxyl sulfate (IS) is powerful predictor of cardiovascular mortality in these patients and a strong promoter of ectopic calcification whose role in CAS remains poorly studied. The objective of this study was to evaluate whether IS influences the mineralization of primary human valvular interstitial cells (hVICs) from the aortic valve. METHODS: Primary hVICs were exposed to increasing concentrations of IS in osteogenic medium (OM). The hVICs' osteogenic transition was monitored by qRT-PCRs for BMP2 and RUNX2 mRNA. Cell mineralization was assayed using the o-cresolphthalein complexone method. Inflammation was assessed by monitoring NF-κB activation using Western blots as well as IL-1ß, IL-6 and TNF-α secretion by ELISAs. Small interfering RNA (siRNA) approaches enabled us to determine which signaling pathways were involved. RESULTS: Indoxyl-sulfate increased OM-induced hVICs osteogenic transition and calcification in a concentration-dependent manner. This effect was blocked by silencing the receptor for IS (the aryl hydrocarbon receptor, AhR). Exposure to IS promoted p65 phosphorylation, the blockade of which inhibited IS-induced mineralization. Exposure to IS promoted IL-6 secretion by hVICs, a phenomenon blocked by silencing AhR or p65. Incubation with an anti-IL-6 antibody neutralized IS's pro-calcific effects. CONCLUSION: IS promotes hVIC mineralization through AhR-dependent activation of the NF-κB pathway and the subsequent release of IL-6. Further research should seek to determine whether targeting inflammatory pathways can reduce the onset and progression of CKD-related CAS.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Humanos , Válvula Aórtica/metabolismo , FN-kappa B/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , Interleucina-6/farmacología , Indicán/farmacología , Indicán/metabolismo , Osteogénesis , Receptores de Hidrocarburo de Aril/metabolismo , Calcinosis/metabolismo , Células Cultivadas , Diferenciación Celular , ARN Interferente Pequeño/metabolismo , Sulfatos/metabolismo , Sulfatos/farmacología
9.
J Clin Med ; 12(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36836075

RESUMEN

Introduction. This study addressed the hypothesis that subtotal nephrectomy associated with a high-phosphorus diet (5/6Nx + P) in rats represents a suitable animal model to mimic the cardiovascular consequences of chronic kidney disease (CKD) including calcified aortic valve disease (CAVD). Indeed, the latter contributes to the high morbidity and mortality of CKD patients and sorely lacks preclinical models for pathophysiological and pharmacological studies. Methods. Renal and cardiovascular function and structure were compared between sham-operated and 5/6 Nx rats + P 10 to 12 weeks after surgery. Results. As expected, 11 weeks after surgery, 5/6Nx + P rats developed CKD as demonstrated by their increase in plasma creatinine and urea nitrogen and decrease in glomerular filtration rate, estimated by using fluorescein-isothiocyanate-labelled sinistrin, anemia, polyuria, and polydipsia compared to sham-operated animals on a normal-phosphorus diet. At the vascular level, 5/6Nx + P rats had an increase in the calcium content of the aorta; a decrease in mesenteric artery dilatation in response to a stepwise increase in flow, illustrating the vascular dysfunction; and an increase in blood pressure. Moreover, immunohistology showed a marked deposition of hydroxyapatite crystals in the aortic valve of 5/6Nx + P rats. Echocardiography demonstrated that this was associated with a decrease in aortic valve cusp separation and an increase in aortic valve mean pressure gradient and in peak aortic valve velocity. Left-ventricular diastolic and systolic dysfunction as well as fibrosis were also present in 5/6Nx + P rats. Conclusion. This study demonstrates that 5/6Nx + P recapitulates the cardiovascular consequences observed in humans with CKD. In particular, the initiation of CAVD was shown, highlighting the interest of this animal model to study the mechanisms involved in the development of aortic stenosis and test new therapeutic strategies at an early stage of the disease.

10.
J Fungi (Basel) ; 8(9)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36135636

RESUMEN

Metal oxide nanoparticles have recently garnered interest as potentially valuable substances for the management of plant diseases. Copper oxide nanoparticles (Cu2ONPs) were chemically fabricated to control root rot disease in cucumbers. A scanning electron microscope (SEM), X-ray diffraction (XRD) and photoluminescence (PL) were employed to characterize the produced nanoparticles. Moreover, the direct antifungal activity of Cu2ONPs against Fusarium solani under laboratory, greenhouse, and field conditions were also evaluated. In addition, the induction of host-plant resistance by Cu2ONPs was confirmed by the results of enzyme activities (catalase, peroxidase, and polyphenoloxidase) and gene expression (PR-1 and LOX-1). Finally, the effect of Cu2ONPs on the growth and productivity characteristics of the treated cucumber plants was investigated. The average particle size from all the peaks was found to be around 25.54 and 25.83 nm for 0.30 and 0.35 Cu2O, respectively. Under laboratory conditions, the study found that Cu2ONPs had a greater inhibitory effect on the growth of Fusarium solani than the untreated control. Cu2ONP treatment considerably reduced the disease incidence of the root rot pathogen in cucumber plants in both greenhouse and field environments. Defense enzyme activity and defense genes (PR1 and LOX1) transcription levels were higher in cucumber plants treated with Cu2ONPs and fungicide than in the untreated control. SEM analysis revealed irregularities, changes, twisting, and plasmolysis in the mycelia, as well as spore shrinking and collapsing in F. solani treated with Cu2ONPs, compared to the untreated control. The anatomical analysis revealed that cucumber plants treated with Cu2ONPs had thicker cell walls, root cortex, and mesophyll tissue (MT) than untreated plants. Cucumber growth and yield characteristics were greatly improved after treatment with Cu2ONPs and fungicide. To the best of our knowledge, employing Cu2ONPs to treat cucumber rot root disease is a novel strategy that has not yet been reported.

11.
Toxins (Basel) ; 14(9)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36136575

RESUMEN

Vascular calcification contributes to cardiovascular morbidity and mortality. A recently developed serum calcification propensity assay is based on the half-transformation time (T50) from primary calciprotein particles (CPPs) to secondary CPPs, reflecting the serum's endogenous capacity to prevent calcium phosphate precipitation. We sought to identify and review the results of all published studies since the development of the T50-test by Pasch et al. in 2012 (whether performed in vitro, in animals or in the clinic) of serum calcification propensity. To this end, we searched PubMed, Elsevier EMBASE, the Cochrane Library and Google Scholar databases from 2012 onwards. At the end of the selection process, 57 studies were analyzed with regard to the study design, sample size, characteristics of the study population, the intervention and the main results concerning T50. In patients with primary aldosteronism, T50 is associated with the extent of vascular calcification in the abdominal aorta. In chronic kidney disease (CKD), T50 is associated with the severity and progression of coronary artery calcification. T50 is also associated with cardiovascular events and all-cause mortality in CKD patients, patients on dialysis and kidney transplant recipients and with cardiovascular mortality in patients on dialysis, kidney transplant recipients, patients with ischemic heart failure and reduced ejection fraction, and in the general population. Switching from acetate-acidified dialysate to citrate-acidified dialysate led to a longer T50, as did a higher dialysate magnesium concentration. Oral administration of magnesium (in CKD patients), phosphate binders, etelcalcetide and spironolactone (in hemodialysis patients) was associated with a lower serum calcification propensity. Serum calcification propensity is an overall marker of calcification associated with hard outcomes but is currently used in research projects only. This assay might be a valuable tool for screening serum calcification propensity in at-risk populations (such as CKD patients and hemodialyzed patients) and, in particular, for monitoring changes over time in T50.


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Biomarcadores , Fosfatos de Calcio , Citratos , Soluciones para Diálisis , Humanos , Magnesio , Espironolactona
12.
Plants (Basel) ; 11(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35890458

RESUMEN

Late blight disease, caused by Phytophthora infestans (Mont.) de Bary, is one of the most challenging diseases threatening tomato production and other Solanaceae crops. Resistance to late blight is found in certain wild species, but the mechanism behind the resistance is not fully understood. The aim of this study was to examine the metabolic profiles in the leaf tissue of late blight-resistant wild tomato and to investigate if leaf extracts from such genotypes could be used to control late blight in tomato production. We included three recognized late blight-resistant wild tomato accessions of Solanum habrochaites (LA1777, LA2855, and LA1352) and two recognized highly susceptible genotypes, S. lycopersicum ('Super Strain B') and S. pimpinellifolium (LA0375). The metabolic profiles were obtained in both inoculated and non-inoculated plants by analyzing leaf extracts using high-resolution gas chromatography-mass spectrometry (GC-MS) with three replicate analyses of each genotype. We focused on volatile organic compounds (VOCs) and identified 31 such compounds from the five genotypes with a retention time ranging from 6.6 to 22.8 min. The resistant genotype LA 1777 produced the highest number of VOCs (22 and 21 in the inoculated and control plants, respectively), whereas the susceptible genotype 'Super Strain B' produced the lowest number of VOCs (11 and 13 in the respective plants). Among the VOCs, 14 were detected only in the resistant genotypes, while two were detected only in the susceptible ones. In vitro trials, with the use of a detached leaflet assay and whole-plant approach, were conducted. We revealed promising insights regarding late blight management and showed that metabolic profiling may contribute to a better understanding of the mechanisms behind P. infestans resistance in tomato and its wild relatives.

13.
J Cell Physiol ; 237(10): 3845-3859, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35892191

RESUMEN

Within the cardiovascular system, the protein vasorin (Vasn) is predominantly expressed by vascular smooth muscle cells (VSMCs) in the coronary arteries and the aorta. Vasn knockout (Vasn-/- ) mice die within 3 weeks of birth. In the present study, we investigated the role of vascular Vasn expression on vascular function. We used inducible Vasn knockout mice (VasnCRE-ERT KO and VasnSMMHC-CRE-ERT2 KO , in which respectively all cells or SMCs only are targeted) to analyze the consequences of total or selective Vasn loss on vascular function. Furthermore, in vivo effects were investigated in vitro using human VSMCs. The death of VasnCRE-ERT KO mice 21 days after tamoxifen injection was concomitant with decreases in blood pressure, angiotensin II levels, and vessel contractibility to phenylephrine. The VasnSMMHC-CRE-ERT2 KO mice displayed concomitant changes in vessel contractibility in response to phenylephrine and angiotensin II levels. In vitro, VASN deficiency was associated with a shift toward the SMC contractile phenotype, an increase in basal intracellular Ca2+ levels, and a decrease in the SMCs' ability to generate a calcium signal in response to carbachol or phenylephrine. Additionally, impaired endothelium-dependent relaxation (due to changes in nitric oxide signaling) was observed in all Vasn knockout mice models. Our present findings highlight the role played by Vasn SMC expression in the maintenance of vascular functions. The mechanistic experiments suggested that these effects are mediated by SMC phenotype switching and changes in intracellular calcium homeostasis, angiotensin II levels, and NO signaling.


Asunto(s)
Angiotensina II , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Liso Vascular , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Calcio/metabolismo , Carbacol , Humanos , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Fenilefrina/metabolismo , Tamoxifeno
14.
Pest Manag Sci ; 78(11): 4638-4648, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35866210

RESUMEN

BACKGROUND: Silver oxide (Ag2 O) nanostructures were fabricated and their ability to induce antifungal activity against Macrophomina phaseolina, which causes charcoal rot disease in strawberries, was evaluated under laboratory, greenhouse and field conditions. A real-time quantitative polymerase chain reaction was used to monitor expression of defense-related genes, which is essential to evaluate the potential of the manufactured nanoparticles to promote strawberry resistance against charcoal rot. The effect of Ag2 O nanoparticles on growth characteristics in strawberry plants was also studied. RESULTS: The results showed that Ag2 O significantly inhibited M. phaseolina growth compared with untreated controls under in vitro conditions. Strawberry plants treated with Ag2 O showed a significant decrease in the severity of charcoal rot disease in the greenhouse compared with untreated plants. Strawberry plants treated with Ag2 O nanoparticles expressed defense gene (PR-1) involved in the salicylic acid signaling pathways at levels three to five times higher than in the control group. Ag2 O nanoparticles significantly improved the growth and yield of the strawberry crop. CONCLUSION: Use of Ag2 O nanoparticles can be considered a new strategy to control M. phaseolina and this is the first report of this effect. © 2022 Society of Chemical Industry.


Asunto(s)
Fragaria , Nanoestructuras , Antifúngicos , Ascomicetos , Fragaria/genética , Fragaria/microbiología , Óxidos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Ácido Salicílico , Compuestos de Plata
15.
Pharmacol Ther ; 237: 108257, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35908611

RESUMEN

CXCR1 and CXCR2 chemokine receptors, mainly activated by interleukin 8 (IL-8 or CXCL8), are expressed in a variety of cells including, leukocytes, fibroblasts, endothelial cells, and smooth muscle cells. Numerous intracellular mediators are activated by these G protein-coupled receptors based on several factors, including the nature of the ligand, its concentration, and the binding sites with the receptor, levels of the receptor, cell type, and stimulatory environment. Much focus is currently being directed towards CXCR1/2 inhibitors, as these receptors primarily induce the chemotaxis of leukocytes, especially neutrophils, during inflammation, a key process in cardiovascular disease (CVD) progression. CXCR1/2 inhibitors show beneficial effects in various animal models of CVD. These effects include reducing the atherosclerotic plaque area, improving the serum lipid profile, attenuation of the damage following ischemia-reperfusion, the regulation of blood pressure, and the restriction of cardiac remodeling. Based on these encouraging results, testing CXCR1/2 inhibitors in clinical trials could be of a great importance to limit the inflammatory complications associated with CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Receptores de Interleucina-8B , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Células Endoteliales/metabolismo , Humanos , Neutrófilos , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo
16.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682871

RESUMEN

The endothelium has a fundamental role in the cardiovascular complications of coronavirus disease 2019 (COVID-19). Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particularly affects endothelial cells. The virus binds to the angiotensin-converting enzyme 2 (ACE-2) receptor (present on type 2 alveolar cells, bronchial epithelial cells, and endothelial cells), and induces a cytokine storm. The cytokines tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 have particular effects on endothelial cells-leading to endothelial dysfunction, endothelial cell death, changes in tight junctions, and vascular hyperpermeability. Under normal conditions, apoptotic endothelial cells are removed into the bloodstream. During COVID-19, however, endothelial cells are detached more rapidly, and do not regenerate as effectively as usual. The loss of the endothelium on the luminal surface abolishes all of the vascular responses mediated by the endothelium and nitric oxide production in particular, which results in greater contractility. Moreover, circulating endothelial cells infected with SARS-CoV-2 act as vectors for viral dissemination by forming clusters that migrate into the circulation and reach distant organs. The cell clusters and the endothelial dysfunction might contribute to the various thromboembolic pathologies observed in COVID-19 by inducing the formation of intravascular microthrombi, as well as by triggering disseminated intravascular coagulation. Here, we review the contributions of endotheliopathy and endothelial-cell-derived extracellular vesicles to the pathogenesis of COVID-19, and discuss therapeutic strategies that target the endothelium in patients with COVID-19.


Asunto(s)
COVID-19 , Enfermedades Vasculares , COVID-19/complicaciones , Citocinas/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Humanos , SARS-CoV-2 , Enfermedades Vasculares/metabolismo
17.
Rev Francoph Lab ; 2022(543): 1, 2022 Jun.
Artículo en Francés | MEDLINE | ID: mdl-35663491
18.
Toxins (Basel) ; 14(5)2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35622583

RESUMEN

Acute kidney injury (AKI) is a frequent disease encountered in the hospital, with a higher incidence in intensive care units. Despite progress in renal replacement therapy, AKI is still associated with early and late complications, especially cardiovascular events and mortality. The role of gut-derived protein-bound uremic toxins (PBUTs) in vascular and cardiac dysfunction has been extensively studied during chronic kidney disease (CKD), in particular, that of indoxyl sulfate (IS), para-cresyl sulfate (PCS), and indole-3-acetic acid (IAA), resulting in both experimental and clinical evidence. PBUTs, which accumulate when the excretory function of the kidneys is impaired, have a deleterious effect on and cause damage to cardiovascular tissues. However, the link between PBUTs and the cardiovascular complications of AKI and the pathophysiological mechanisms potentially involved are unclear. This review aims to summarize available data concerning the participation of PBUTs in the early and late cardiovascular complications of AKI.


Asunto(s)
Lesión Renal Aguda , Cardiopatías , Insuficiencia Renal Crónica , Lesión Renal Aguda/etiología , Humanos , Riñón , Insuficiencia Renal Crónica/complicaciones , Tóxinas Urémicas
19.
Plants (Basel) ; 11(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35270098

RESUMEN

Rust, induced by the fungus Uromyces appendiculatus, is one of the most serious bean diseases. The involved mechanisms in rust resistance were evaluated in 10 common bean genotypes during the 2019/2020 and 2020/2021 growing seasons. The disease parameters such as final rust severity (FRS%), area under the disease progress curve (AUDPC) and disease increase rate (r-value) were lower in the resistant genotypes than in highly susceptible genotypes. Biochemical compounds such as total phenols and the activity of antioxidant enzymes such as catalase, peroxidase and polyphenol oxidase were increased in the resistant genotypes compared to susceptible genotypes. In the resistance genotypes, the levels of oxidative stress markers such as hydrogen peroxide (H2O2) and superoxide (O2•-) increased dramatically after infection. The electrolyte leakage percentage (EL%), was found to be much greater in susceptible genotypes than resistant genotypes. The resistant gene SA14, which was found in genotypes Nebraska and Calypso at 800 bp, had an adequate level of resistance to bean rust with high grain yield potential. After infection, the transcriptions levels of 1,3-D-glucanases and phenylalanine ammonia lyase) were higher in the resistant genotypes than susceptible genotypes. In conclusion, the resistant genotypes successfully displayed desirable agronomic traits and promising expectations in breeding programs for improving management strategies of common bean rust disease. The resistance was mediated by antioxidant enzymes, phenolic compounds, and defense gene expressions, as well as the resistant gene SA14.

20.
Front Cell Dev Biol ; 10: 823450, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356285

RESUMEN

Background: Vascular calcification (VC) is a cardiovascular complication associated with a high mortality rate among patients with diseases such as atherosclerosis and chronic kidney disease. During VC, vascular smooth muscle cells (VSMCs) undergo an osteogenic switch and secrete a heterogeneous population of extracellular vesicles (EVs). Recent studies have shown involvement of EVs in the inflammation and oxidative stress observed in VC. We aimed to decipher the role and mechanism of action of macrophage-derived EVs in the propagation of inflammation and oxidative stress on VSMCs during VC. Methods: The macrophage murine cell line RAW 264.7 treated with lipopolysaccharide (LPS-EK) was used as a cellular model for inflammatory and oxidative stress. EVs secreted by these macrophages were collected by ultracentrifugation and characterized by transmission electron microscopy, cryo-electron microscopy, nanoparticle tracking analysis, and the analysis of acetylcholinesterase activity, as well as that of CD9 and CD81 protein expression by western blotting. These EVs were added to a murine VSMC cell line (MOVAS-1) under calcifying conditions (4 mM Pi-7 or 14 days) and calcification assessed by the o-cresolphthalein calcium assay. EV protein content was analyzed in a proteomic study and EV cytokine content assessed using an MSD multiplex immunoassay. Results: LPS-EK significantly decreased macrophage EV biogenesis. A 24-h treatment of VSMCs with these EVs induced both inflammatory and oxidative responses. LPS-EK-treated macrophage-derived EVs were enriched for pro-inflammatory cytokines and CAD, PAI-1, and Saa3 proteins, three molecules involved in inflammation, oxidative stress, and VC. Under calcifying conditions, these EVs significantly increase the calcification of VSMCs by increasing osteogenic markers and decreasing contractile marker expression. Conclusion: Our results show that EVs derived from LPS-EK-treated-macrophages are able to induce pro-inflammatory and pro-oxidative responses in surrounding cells, such as VSMCs, thus aggravating the VC process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...