Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 601, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182640

RESUMEN

Studies on motor adaptation aim to better understand the remarkable, largely implicit capacity of humans to adjust to changing environmental conditions. So far, this phenomenon has mainly been investigated in highly controlled laboratory setting, allowing only limited conclusions and consequences for everyday life scenarios. Natural movement tasks performed under externally valid conditions would provide important support on the transferability of recent laboratory findings. Therefore, one major goal of the current study was to create and assess a new table tennis paradigm mapping motor adaptation in a more natural and sport-specific setting. High-speed cinematographic measurements were used to determine target accuracy in a motor adaptation table tennis paradigm in 30 right-handed participants. In addition, we investigated if motor adaptation was affected by temporal order of perturbations (serial vs. random practice). In summary, we were able to confirm and reproduce typical motor adaptation effects in a sport-specific setting. We found, according to previous findings, an increase in target errors with perturbation onset that decreased during motor adaptation. Furthermore, we observed an increase in target errors with perturbation offset (after-effect) that decrease subsequently during washout phase. More importantly, this motor adaptation phenomenon did not differ when comparing serial vs. random perturbation conditions.


Asunto(s)
Deportes , Tenis , Humanos , Mano , Laboratorios , Movimiento
2.
Eur J Neurosci ; 59(8): 2046-2058, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38270331

RESUMEN

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique which was found to have a positive modulatory effect on online sequence acquisition or offline motor consolidation, depending on the relative role of the associated brain region. Primary motor regions (M1) and dorsolateral prefrontal cortices (DLPFC) have both been related to sequential learning. However, research so far did not systematically disentangle their differential roles in online and offline learning especially in more complex sequential paradigms. In this study, the influence of anodal M1 leg area-tDCS and anodal DLPFC-tDCS applied during complex sequential learning (online and offline) was investigated using a complex whole body serial reaction time task (CWB-SRTT) in 42 healthy volunteers. TDCS groups did not differ from sham tDCS group regarding their response and reaction time (online) and also not in terms of overnight consolidation (offline). Sequence specific learning and the number of recalled items also did not differ between groups. Results may be related to unspecific parameters such as timing of the stimulation or current intensity but can also be attributed to the relative role of M1 and DLPFC during early complex learning. Taken together, the current study provides preliminary evidence that M1 leg area or DLPFC modulation by means of tDCS does not improve complex sequential skill learning. SIGNIFICANCE STATEMENT: Understanding motor learning is helpful to deepen our knowledge about the human ability to acquire new skills. Complex sequential learning tasks have only been studied, sparsely, but are particularly mimicking challenges of daily living. The present study studied early motor learning in a complex serial reaction time task while transcranial direct current stimulation (tDCS) was either applied to leg primary motor cortex or bilateral dorsolateral prefrontal cortex. TDCS did not affect sequential learning, neither directly during performance nor in terms of sequence consolidation. Results provide preliminary information that M1 or bilateral DLPFC modulation does not improve early complex motor learning.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Corteza Prefontal Dorsolateral , Corteza Motora/fisiología , Aprendizaje/fisiología , Tiempo de Reacción/fisiología , Corteza Prefrontal/fisiología
3.
Brain Topogr ; 36(4): 500-516, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37119404

RESUMEN

There is a growing interest to understand the neural underpinnings of high-level sports performance including expertise-related differences in sport-specific skills. Here, we aimed to investigate whether expertise level and task complexity modulate the cortical hemodynamics of table tennis players. 35 right-handed table tennis players (17 experts/18 novices) were recruited and performed two table tennis strokes (forehand and backhand) and a randomized combination of them. Cortical hemodynamics, as a proxy for cortical activity, were recorded using functional near-infrared spectroscopy, and the behavioral performance (i.e., target accuracy) was assessed via video recordings. Expertise- and task-related differences in cortical hemodynamics were analyzed using nonparametric threshold-free cluster enhancement. In all conditions, table tennis experts showed a higher target accuracy than novices. Furthermore, we observed expertise-related differences in widespread clusters compromising brain areas being associated with sensorimotor and multisensory integration. Novices exhibited, in general, higher activation in those areas as compared to experts. We also identified task-related differences in cortical activity including frontal, sensorimotor, and multisensory brain areas. The present findings provide empirical support for the neural efficiency hypothesis since table tennis experts as compared to novices utilized a lower amount of cortical resources to achieve superior behavioral performance. Furthermore, our findings suggest that the task complexity of different table tennis strokes is mirrored in distinct cortical activation patterns. Whether the latter findings can be useful to monitor or tailor sport-specific training interventions necessitates further investigations.


Asunto(s)
Tenis , Humanos , Encéfalo/fisiología , Tenis/fisiología
4.
Front Aging Neurosci ; 14: 935781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204550

RESUMEN

Transferring a unimanual motor skill to the untrained hand, a phenomenon known as cross-limb transfer, was shown to deteriorate as a function of age. While transcranial direct current stimulation (tDCS) ipsilateral to the trained hand facilitated cross-limb transfer in older adults, little is known about the contribution of the contralateral hemisphere to cross-limb transfer. In the present study, we investigated whether tDCS facilitates cross-limb transfer in older adults when applied over the motor cortex (M1) contralateral to the trained hand. Furthermore, the study aimed at investigating short-term recovery of tDCS-associated cross-limb transfer. In a randomized, double-blinded, sham-controlled setting, 30 older adults (67.0 ± 4.6 years, 15 female) performed a short grooved-pegboard training using their left hand, while anodal (a-tDCS) or sham-tDCS (s-tDCS) was applied over right M1 for 20 min. Left (LH trained ) - and right-hand (RH untrained ) performance was tested before and after training and in three recovery measures 15, 30 and 45 min after training. LH trained performance improved during both a-tDCS and s-tDCS and improvements persisted during recovery measures for at least 45 min. RH untrained performance improved only following a-tDCS but not after s-tDCS and outlasted the stimulation period for at least 45 min. Together, these data indicate that tDCS over the M1 contralateral to the trained limb is capable of enhancing cross-limb transfer in older adults, thus showing that cross-limb transfer is mediated not only by increased bi-hemispheric activation.

5.
Cereb Cortex Commun ; 3(1): tgac006, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35233532

RESUMEN

The medial prefrontal cortex (mPFC) is thought to be central for flexible behavioral adaptation. However, the causal relationship between mPFC activity and this behavior is incompletely understood. We investigated whether transcranial direct current stimulation (tDCS) over the mPFC alters flexible behavioral adaptation during reward-based decision-making, targeting Montreal Neurological Institute (MNI) coordinates X = -8, Y = 62, Z = 12, which has previously been associated with impaired behavioral adaptation in alcohol-dependent patients. Healthy human participants (n = 61) received either anodal (n = 30) or cathodal (n = 31) tDCS versus sham tDCS while performing a reversal learning task. To assess the mechanisms of reinforcement learning (RL) underlying our behavioral observations, we applied computational models that varied with respect to the updating of the unchosen choice option. We observed that anodal stimulation over the mPFC induced increased choice switching after punishments compared with sham stimulation, whereas cathodal stimulation showed no effect on participants' behavior compared with sham stimulation. RL revealed increased updating of the unchosen choice option under anodal as compared with sham stimulation, which accounted well for the increased tendency to switch after punishments. Our findings provide a potential model for tDCS interventions in conditions related to flexible behavioral adaptation, such as addiction.

6.
Front Aging Neurosci ; 12: 596438, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324196

RESUMEN

While in young adults (YAs) the underlying neural mechanisms of motor learning are well-studied, studies on the involvement of the somatosensory system during motor skill learning in older adults (OAs) remain sparse. Therefore, the aim of the present study was to investigate motor learning-induced neuroplasticity in the primary somatosensory cortex (S1) in YAs and OAs. Somatosensory evoked potentials (SEPs) were used to quantify somatosensory activation prior and immediately after motor skill learning in 20 right-handed healthy YAs (age range: 19-35 years) and OAs (age range: 57-76 years). Participants underwent a single session of a 30-min co-contraction task of the abductor pollicis brevis (APB) and deltoid muscle. To assess the effect of motor learning, muscle onset asynchrony (MOA) between the onsets of the contractions of both muscles was measured using electromyography monitoring. In both groups, MOA shortened significantly during motor learning, with YAs showing bigger reductions. No changes were found in SEP amplitudes after motor learning in both groups. However, a correlation analysis revealed an association between baseline SEP amplitudes of the N20/P25 and N30 SEP component and the motor learning slope in YAs such that higher amplitudes are related to higher learning. Hence, the present findings suggest that SEP amplitudes might serve as a predictor of individual motor learning success, at least in YAs. Additionally, our results suggest that OAs are still capable of learning complex motor tasks, showing the importance of motor training in higher age to remain an active part of our society as a prevention for care dependency.

7.
PLoS One ; 15(9): e0238318, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32881901

RESUMEN

Knowledge on neural processing during complex non-stationary motion sequences of sport-specific movements still remains elusive. Hence, we aimed at investigating hemodynamic response alterations during a basketball slalom dribbling task (BSDT) using multi-distance functional near-infrared spectroscopy (fNIRS) in 23 participants (12 females). Additionally, we quantified how the brain adapts its processing as a function of altered hand use (dominant right hand (DH) vs. non-dominant left hand (NDH) vs. alternating hands (AH)) and pace of execution (slow vs. fast) in BSDT. We found that BSDT activated bilateral premotor cortex (PMC), supplementary motor cortex (SMA), primary motor cortex (M1) as well as inferior parietal cortex and somatosensory association cortex. Slow dominant hand dribbling (DHslow) evoked lower contralateral hemodynamic responses in sensorimotor regions compared to fast dribbling (DHfast). Furthermore, during DHslow dribbling, we found lower hemodynamic responses in ipsilateral M1 as compared to dribbling with alternating hands (AHslow). Hence, altered task complexity during BSDT induced differential hemodynamic response patterns. Furthermore, a correlation analysis revealed that lower levels of perceived task complexity are associated with lower hemodynamic responses in ipsilateral PMC-SMA, which is an indicator for neuronal efficiency in participants with better basketball dribbling skills. The present study extends previous findings by showing that varying levels of task complexity are reflected by specific hemodynamic response alterations even during sports-relevant motor behavior. Taken together, we suggest that quantifying brain activation during complex movements is a prerequisite for assessing brain-behavior relations and optimizing motor performance.


Asunto(s)
Encéfalo/fisiología , Hemodinámica , Adulto , Baloncesto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Lateralidad Funcional/fisiología , Hemoglobinas/química , Humanos , Masculino , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Espectroscopía Infrarroja Corta , Adulto Joven
8.
Neurosci Lett ; 715: 134604, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31693932

RESUMEN

Bouldering is a special form of climbing without rope that requires coordinated whole-body movements. While physical performance parameters such as condition have been well studied, the knowledge on neural activity during climbing still remains sparse. Functional near-infrared spectroscopy (fNIRS) allows to measure brain activation while performing sportive actions due to its relative robustness against motion artefacts. In the current study, hemodynamic response alterations of 13 advanced climbers were investigated during boulder performance using fNIRS measurements. Simple and moderate climbing routes were compared regarding their level of cortical activation mainly in the sensorimotor area. Our results show that repetitively climbing a set of boulders activates almost all areas of the sensorimotor system including the bilateral premotor and supplementary motor cortex, bilateral primary motor cortex as well as the bilateral gyrus supramarginalis and somatosensory cortex. This result was found in both simple and moderate climbing routes with no effect of task complexity on the level of cortical activity. Correlation analysis (uncorrected for multiple comparisons) revealed a negative association between the level of expertise and the hemodynamic response in the supplementary-motor region, suggesting that gaining expertise in climbing is associated with a decrease in secondary motor areas, which is an indicator of motor automaticity. In summary, the present study provides first proof of concept that fNIRS is capable of assessing hemodynamic response alterations within the human motor system during the execution of complex whole-body climbing movements.


Asunto(s)
Hemodinámica/fisiología , Corteza Motora/metabolismo , Montañismo/fisiología , Plasticidad Neuronal/fisiología , Corteza Somatosensorial/metabolismo , Espectroscopía Infrarroja Corta/métodos , Adulto , Femenino , Humanos , Masculino , Movimiento/fisiología , Adulto Joven
9.
Hum Brain Mapp ; 40(15): 4316-4330, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31264300

RESUMEN

Brain circuits mediate but also constrain experience-induced plasticity and corresponding behavioral changes. Here we tested whether interindividual behavioral differences in learning a challenging new motor skill correlate with variations in brain anatomy. Young, healthy participants were scanned using structural magnetic resonance imaging (T1-weighted MPRAGE, n = 75 and/or diffusion-weighted MRI, n = 59) and practiced a complex whole-body balancing task on a seesaw-like platform. Using conjunction tests based on the nonparametric combination (NPC) methodology, we found that gray matter volume (GMV) in the right orbitrofrontal cortex was positively related to the subjects' initial level of proficiency and their ability to improve performance during practice. Similarly, we obtained a strong trend toward a positive correlation between baseline fractional anisotropy (FA) in commissural prefrontal fiber pathways and later motor learning. FA results were influenced more strongly by radial than axial diffusivity. However, we did not find unique anatomical correlates of initial performance and learning to rate. Our findings reveal structural predispositions for successful motor skill performance and acquisition in frontal brain structures and underlying frontal white matter tracts. Together with previous results, these findings support the view that structural constraints imposed by the brain determine subsequent behavioral success and underline the importance of structural brain network constitution before learning starts.


Asunto(s)
Variación Biológica Individual , Imagen de Difusión Tensora/métodos , Sustancia Gris/fisiología , Aprendizaje/fisiología , Destreza Motora/fisiología , Equilibrio Postural/fisiología , Corteza Prefrontal/fisiología , Sustancia Blanca/fisiología , Logro , Adolescente , Adulto , Imagen de Difusión por Resonancia Magnética , Femenino , Sustancia Gris/anatomía & histología , Sustancia Gris/diagnóstico por imagen , Humanos , Masculino , Tamaño de los Órganos , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/diagnóstico por imagen , Valores de Referencia , Estadísticas no Paramétricas , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
10.
Front Hum Neurosci ; 11: 160, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28420973

RESUMEN

Several studies investigating the relationship between physical activity and cognition showed that exercise interventions might have beneficial effects on working memory, executive functions as well as motor fitness in old adults. Recently, movement based video games (exergames) have been introduced to have the capability to improve cognitive function in older adults. Healthy aging is associated with a loss of cognitive, as well as sensorimotor functions. During exergaming, participants are required to perform physical activities while being simultaneously surrounded by a cognitively challenging environment. However, only little is known about the impact of exergame training interventions on a broad range of motor, sensory, and cognitive skills. Therefore, the present study aims at investigating the effects of an exergame training over 6 weeks on cognitive, motor, and sensory functions in healthy old participants. For this purpose, 30 neurologically healthy older adults were randomly assigned to either an experimental (ETG, n = 15, 1 h training, twice a week) or a control group (NTG, n = 15, no training). Several cognitive tests were performed before and after exergaming in order to capture potential training-induced effects on processing speed as well as on executive functions. To measure the impact of exergaming on sensorimotor performance, a test battery consisting of pinch and grip force of the hand, tactile acuity, eye-hand coordination, flexibility, reaction time, coordination, and static balance were additionally performed. While we observed significant improvements in the trained exergame (mainly in tasks that required a high load of coordinative abilities), these gains did not result in differential performance improvements when comparing ETG and NTG. The only exergaming-induced difference was a superior behavioral gain in fine motor skills of the left hand in ETG compared to NTG. In an exploratory analysis, within-group comparison revealed improvements in sensorimotor and cognitive tasks (ETG) while NTG only showed an improvement in a static balance test. Taken together, the present study indicates that even though exergames might improve gaming performance, our behavioral assessment was probably not sensitive enough to capture exergaming-induced improvements. Hence, we suggest to use more tailored outcome measures in future studies to assess potential exergaming-induced changes.

11.
Front Hum Neurosci ; 11: 54, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28220070

RESUMEN

Mirror visual feedback (MVF) is a promising approach to enhance motor performance without training in healthy adults as well as in patients with focal brain lesions. There is preliminary evidence that a functional modulation within and between primary motor cortices as assessed with transcranial magnetic stimulation (TMS) might be one candidate mechanism mediating the observed behavioral effects. Recently, studies using task-based functional magnetic resonance imaging (fMRI) have indicated that MVF-induced functional changes might not be restricted to the primary motor cortex (M1) but also include higher order regions responsible for perceptual-motor coordination and visual attention. However, aside from these instantaneous task-induced brain changes, little is known about learning-related neuroplasticity induced by MVF. Thus, in the present study, we assessed MVF-induced functional network plasticity with resting-state fMRI (rs-fMRI). We performed rs-fMRI of 35 right-handed, healthy adults before and after performing a complex ball-rotation task. The primary outcome measure was the performance improvement of the untrained left hand (LH) before and after right hand (RH) training with MVF (mirror group [MG], n = 17) or without MVF (control group [CG], n = 18). Behaviorally, the MG showed superior performance improvements of the untrained LH. In resting-state functional connectivity (rs-FC), an interaction analysis between groups showed changes in left visual cortex (V1, V2) revealing an increase of centrality in the MG. Within group comparisons showed further functional alterations in bilateral primary sensorimotor cortex (SM1), left V4 and left anterior intraparietal sulcus (aIP) in the MG, only. Importantly, a correlation analysis revealed a linear positive relationship between MVF-induced improvements of the untrained LH and functional alterations in left SM1. Our results suggest that MVF-induced performance improvements are associated with functional learning-related brain plasticity and have identified additional target regions for non-invasive brain stimulation techniques, a finding of potential interest for neurorehabilitation.

12.
Front Hum Neurosci ; 11: 16, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197085

RESUMEN

Older adults frequently experience a decrease in balance control that leads to increased numbers of falls, injuries and hospitalization. Therefore, evaluating older adults' ability to maintain balance and examining new approaches to counteract age-related decline in balance control is of great importance for fall prevention and healthy aging. Non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) have been shown to beneficially influence motor behavior and motor learning. In the present study, we investigated the influence of tDCS applied over the leg area of the primary motor cortex (M1) on balance task learning of healthy elderly in a dynamic balance task (DBT). In total, 30 older adults were enrolled in a cross-sectional, randomized design including two consecutive DBT training sessions. Only during the first DBT session, either 20 min of anodal tDCS (a-tDCS) or sham tDCS (s-tDCS) were applied and learning improvement was compared between the two groups. Our data showed that both groups successfully learned to perform the DBT on both training sessions. Interestingly, between-group analyses revealed no difference between the a-tDCS and the s-tDCS group regarding their level of task learning. These results indicate that the concurrent application of tDCS over M1 leg area did not elicit DBT learning enhancement in our study cohort. However, a regression analysis revealed that DBT performance can be predicted by the kinematic profile of the movement, a finding that may provide new insights for individualized approaches of treating balance and gait disorders.

14.
Front Hum Neurosci ; 10: 560, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27857687

RESUMEN

Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1) or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI), remains elusive. Transcranial magnetic stimulation (TMS) is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the ß-frequency band (20 Hz) over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (motor evoked potential (MEP) size, resting motor threshold (RMT), IHI from left to right M1 and vice versa) was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT) and/or IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency-specific effects of tACS on intracortical excitation and IHI.

15.
Clin Neurophysiol ; 127(6): 2455-62, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27178865

RESUMEN

OBJECTIVE: The aim of the study was to investigate the effects of facilitatory anodal tDCS (a-tDCS) applied over the leg area of the primary motor cortex on learning a complex whole-body dynamic balancing task (DBT). We hypothesized that a-tDCS during DBT enhances learning performance compared to sham tDCS (s-tDCS). METHODS: In a randomized, parallel design, we applied either a-tDCS (n=13) or s-tDCS (n=13) in a total of 26 young subjects while they perform the DBT. Task performance and error rates were compared between groups. Additionally, we investigated the effect of tDCS on the relationship between performance and kinematic variables capturing different aspects of task execution. RESULTS: A-tDCS over M1 leg area promotes balance performance in a DBT relative to s-tDCS, indicated by higher performance and smaller error scores. Furthermore, a-tDCS seems to mediate the relationship between DBT performance and the kinematic variable velocity. CONCLUSIONS: Our findings provide novel evidence for the ability of tDCS to improve dynamic balance learning, a fact, particularly important in the context of treating balance and gait disorders. SIGNIFICANCE: TDCS facilitates dynamic balance performance by strengthening the inverse relationship of performance and velocity, thus making tDCS one potential technique to improve walking ability or help to prevent falls in patients in the future.


Asunto(s)
Pierna/inervación , Corteza Motora/fisiología , Equilibrio Postural , Estimulación Transcraneal de Corriente Directa , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Pierna/fisiología , Masculino
16.
Front Aging Neurosci ; 7: 176, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441638

RESUMEN

Healthy aging is associated with a variety of functional and structural brain alterations. These age-related brain alterations have been assumed to negatively impact cognitive and motor performance. Especially important for the execution of everyday activities in older adults (OA) is the ability to perform movements that depend on both hands working together. However, bimanual coordination is typically deteriorated with increasing age. Hence, a deeper understanding of such age-related brain-behavior alterations might offer the opportunity to design future interventional studies in order to delay or even prevent the decline in cognitive and/or motor performance over the lifespan. Here, we examined to what extent the capability to acquire and maintain a novel bimanual motor skill is still preserved in healthy OA as compared to their younger peers (YA). For this purpose, we investigated performance of OA (n = 26) and YA (n = 26) in a bimanual serial reaction time task (B-SRTT), on two experimental sessions, separated by 1 week. We found that even though OA were generally slower in global response times, they showed preserved learning capabilities in the B-SRTT. However, sequence specific learning was more pronounced in YA as compared to OA. Furthermore, we found that switching between hands during B-SRTT learning trials resulted in increased response times (hand switch costs), a phenomenon that was more pronounced in OA. These hand switch costs were reduced in both groups over the time course of learning. More interestingly, there were no group differences in hand switch costs on the second training session. These results provide novel evidence that bimanual motor skill learning is capable of reducing age-related deficits in hand switch costs, a finding that might have important implications to prevent the age-related decline in sensorimotor function.

17.
Eur J Neurosci ; 41(11): 1475-83, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25912048

RESUMEN

Previous studies have indicated that age-related behavioral alterations are not irreversible but are subject to amelioration through specific training interventions. Both training paradigms and non-invasive brain stimulation (NIBS) can be used to modulate age-related brain alterations and thereby influence behavior. It has been shown that mirror visual feedback (MVF) during motor skill training improves performance of the trained and untrained hands in young adults. The question remains of whether MVF also improves motor performance in older adults and how performance improvements can be optimised via NIBS. Here, we sought to determine whether anodal transcranial direct current stimulation (a-tDCS) can be used to augment MVF-induced performance improvements in manual dexterity. We found that older adults receiving a-tDCS over the right primary motor cortex (M1) during MVF showed superior performance improvements of the (left) untrained hand relative to sham stimulation. An additional control experiment in participants receiving a-tDCS over the right M1 only (without MVF/motor training of the right hand) revealed no significant behavioral gains in the left (untrained) hand. On the basis of these findings, we propose that combining a-tDCS with MVF might be relevant for future clinical studies that aim to optimise the outcome of neurorehabilitation.


Asunto(s)
Retroalimentación Sensorial , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Estimulación Transcraneal de Corriente Directa , Anciano , Femenino , Lateralidad Funcional , Humanos , Masculino , Actividad Motora
18.
J Neurophysiol ; 113(7): 2383-9, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25632079

RESUMEN

Mirror visual feedback (MVF) during motor training has been shown to improve motor performance of the untrained hand. Here we thought to determine if MVF-induced performance improvements of the left hand can be augmented by upregulating plasticity in right primary motor cortex (M1) by means of anodal transcranial direct current stimulation (a-tDCS) while subjects trained with the right hand. Participants performed a ball-rotation task with either their left (untrained) or right (trained) hand on two consecutive days (days 1 and 2). During training with the right hand, MVF was provided concurrent with two tDCS conditions: group 1 received a-tDCS over right M1 (n = 10), whereas group 2 received sham tDCS (s-tDCS, n = 10). On day 2, performance was reevaluated under the same experimental conditions compared with day 1 but without tDCS. While baseline performance of the left hand (day 1) was not different between groups, a-tDCS exhibited stronger MVF-induced performance improvements compared with s-tDCS. Similar results were observed for day 2 (without tDCS application). A control experiment (n = 8) with a-tDCS over right M1 as outlined above but without MVF revealed that left hand improvement was significantly less pronounced than that induced by combined a-tDCS and MVF. Based on these results, we provide novel evidence that upregulating activity in the untrained M1 by means of a-tDCS is capable of augmenting MVF-induced performance improvements in young normal volunteers. Our findings suggest that concurrent MVF and tDCS might have synergistic and additive effects on motor performance of the untrained hand, a result of relevance for clinical approaches in neurorehabilitation and/or exercise science.


Asunto(s)
Retroalimentación Sensorial/fisiología , Ilusiones/fisiología , Aprendizaje/fisiología , Destreza Motora/fisiología , Movimiento/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Método Doble Ciego , Femenino , Lateralidad Funcional/fisiología , Humanos , Masculino , Adulto Joven
19.
Front Hum Neurosci ; 9: 702, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26834605

RESUMEN

Mirror visual feedback (MVF) is a promising technique in clinical settings that can be used to augment performance of an untrained limb. Several studies with healthy volunteers and patients using transcranial magnetic stimulation (TMS) or functional magnetic resonance imaging (fMRI) indicate that functional alterations within primary motor cortex (M1) might be one candidate mechanism that could explain MVF-induced changes in behavior. Until now, most studies have used MVF to improve performance of the non-dominant hand (NDH). The question remains if the behavioral effect of MVF differs according to hand dominance. Here, we conducted a study with two groups of young, healthy right-handed volunteers who performed a complex ball-rotation task while receiving MVF of the dominant (n = 16, group 1, MVFDH) or NDH (n = 16, group 2, MVFNDH). We found no significant differences in baseline performance of the untrained hand between groups before MVF was applied. Furthermore, there was no significant difference in the amount of performance improvement between MVFDH and MVFNDH indicating that the outcome of MVF seems not to be influenced by hand dominance. Thus our findings might have important implications in neurorehabilitation suggesting that patients suffering from unilateral motor impairments might benefit from MVF regardless of the dominance of the affected limb.

20.
Neurosci Lett ; 552: 76-80, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23933205

RESUMEN

The aim of the study was to investigate tDCS effects on motor skill learning in a complex whole body dynamic balance task (DBT). We hypothesized that tDCS over the supplementary motor area (SMA), a region that is known to be involved in the control of multi-joint whole body movements, will result in polarity specific changes in DBT learning. In a randomized sham-controlled, double-blinded parallel design, we applied 20 min of tDCS over the supplementary motor area (SMA) and prefrontal cortex (PFC) while subjects performed a DBT. Anodal tDCS over SMA with the cathode placed over contralateral PFC impaired motor skill learning of the DBT compared to sham. This effect was still present on the second day of training. Reversing the polarity (cathode over SMA, anode over PFC) did not affect motor skill learning neither on the first nor on the second day of training. To better disentangle whether the impaired motor skill learning was due to a modulation of SMA or PFC, we performed an additional control experiment. Here, we applied anodal tDCS over SMA together with a larger and presumably more ineffective electrode (cathode) over PFC. Interestingly this alternative tDCS electrode setup did not affect the outcome of DBT learning. Our results provide novel evidence that a modulation of the (right) PFC seems to impair complex multi-joint motor skill learning. Hence, future studies should take the positioning of both tDCS electrodes into account when investigating complex motor skill learning.


Asunto(s)
Aprendizaje/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Adulto , Método Doble Ciego , Estimulación Eléctrica/métodos , Femenino , Humanos , Masculino , Equilibrio Postural/fisiología , Corteza Prefrontal/fisiología , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...