Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Int J Toxicol ; 43(4): 407-420, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38647416

RESUMEN

The oral toxicity of recombinant human lactoferrin (rhLF, Helaina rhLF, Effera™) produced in Komagataella phaffii was investigated in adult Sprague Dawley rats by once daily oral gavage for 14 consecutive days. The study used groups of 3-6 rats/sex/dose. The vehicle control group received sodium citrate buffer, and the test groups received daily doses of 200, 1000, and 2000 mg of rhLF in sodium citrate buffer per kg body weight. Bovine LF at 2000 mg/kg body weight per day was used as a comparative control. Clinical observations, body weight, hematology, clinical chemistry, iron parameters, immunophenotyping, and gross examination at necropsy were used as criteria for detecting the effects of treatment in all groups and to help select dose levels for future toxicology studies. Quantitative LF levels were also analyzed as an indication of bioavailability. Overall, administration of Helaina rhLF by once daily oral gavage for 14 days was well tolerated in rats at levels up to 2000 mg/kg/day, or 57 × Helaina's intended commercial use in adults, and indicating that a high dose of 2000 mg/kg/day is appropriate for future definitive toxicology studies.


Asunto(s)
Relación Dosis-Respuesta a Droga , Lactoferrina , Ratas Sprague-Dawley , Proteínas Recombinantes , Animales , Lactoferrina/toxicidad , Proteínas Recombinantes/toxicidad , Masculino , Femenino , Humanos , Ratas , Nivel sin Efectos Adversos Observados , Administración Oral , Peso Corporal/efectos de los fármacos , Saccharomycetales
2.
Food Chem Toxicol ; 187: 114584, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490353

RESUMEN

Pyrrolizidine alkaloids (PA) are comprised of a family of hundreds of metabolites, produced by plants as a mechanism to protect against herbivory. Upon ingestion and metabolism, dehydropyrrolizidine alkaloids are formed, which are known to generate DNA adducts and subsequently double-strand DNA breaks. Within the liver, the most sensitive cell type to PA exposure is the sinusoidal endothelial cell, as evidenced by the generation of veno-occlusive disease in the human population. PAs are a common crop contaminant and have been regulated by some agencies, using the precautionary principle; each equally potent and genotoxic. Therefore, as a proof of principle we have established a human in vitro coculture model system, utilizing the metabolically active HepaRG hepatocyte and the SK-Hep-1 endothelial cell, to determine differential potencies of different PAs commonly found in crops and food products, notably cell death, targeting of endothelial cells, and genotoxicity comparing the micronucleus assay versus γH2AX assay. Our results demonstrate differential potencies of the PAs used, which encompass three esterification states (monoester, cyclic diester, and open-chain diester). The results suggest that a more nuanced approach to the regulation of PAs may be more appropriate in the regulatory decision-making process.


Asunto(s)
Alcaloides de Pirrolicidina , Humanos , Alcaloides de Pirrolicidina/toxicidad , Alcaloides de Pirrolicidina/metabolismo , Células Endoteliales/metabolismo , Técnicas de Cocultivo , Hepatocitos/metabolismo , Hígado/metabolismo
3.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38501122

RESUMEN

The germinal center response or reaction (GCR) is a hallmark event of adaptive humoral immunity. Unfolding in the B cell follicles of the secondary lymph organs, a GC culminates in the production of high-affinity antibody-secreting plasma cells along with memory B cells. By interacting with follicular dendritic cells (FDC) and T follicular helper (Tfh) cells, GC B cells exhibit complex spatiotemporal dynamics. Driving the B cell dynamics are the intracellular signal transduction and gene regulatory network that responds to cell surface signaling molecules, cytokines, and chemokines. As our knowledge of the GC continues to expand in depth and in scope, mathematical modeling has become an important tool to help disentangle the intricacy of the GCR and inform novel mechanistic and clinical insights. While the GC has been modeled at different granularities, a multiscale spatial simulation framework - integrating molecular, cellular, and tissue-level responses - is still rare. Here, we report our recent progress toward this end with a hybrid stochastic GC framework developed on the Cellular Potts Model-based CompuCell3D platform. Tellurium is used to simulate the B cell intracellular molecular network comprising NF-κB, FOXO1, MYC, AP4, CXCR4, and BLIMP1 that responds to B cell receptor (BCR) and CD40-mediated signaling. The molecular outputs of the network drive the spatiotemporal behaviors of B cells, including cyclic migration between the dark zone (DZ) and light zone (LZ) via chemotaxis; clonal proliferative bursts, somatic hypermutation, and DNA damage-induced apoptosis in the DZ; and positive selection, apoptosis via a death timer, and emergence of plasma cells in the LZ. Our simulations are able to recapitulate key molecular, cellular, and morphological GC events including B cell population growth, affinity maturation, and clonal dominance. This novel modeling framework provides an open-source, customizable, and multiscale virtual GC simulation platform that enables qualitative and quantitative in silico investigations of a range of mechanic and applied research questions in future.

5.
Regul Toxicol Pharmacol ; 149: 105598, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548044

RESUMEN

In 2022 the World Health Organization (WHO) published updated 'Toxic Equivalence Factors' (TEFs) for a wide variety of chlorinated dioxins, dibenzofurans and PCBs [collectively referred to as 'dioxin-like chemicals'; DLCs) that interact with the aryl hydrocarbon receptor (AHR)]. Their update used sophisticated statistical analysis of hundreds of published studies that reported estimation of 'Relative Effective Potency' (REP) values for individual DLC congeners. The weighting scheme used in their assessment of each study favored in vivo over in vitro studies and was based largely on rodent studies. In this Commentary, we highlight the large body of published studies that demonstrate large species differences in AHR-ligand activation and provide supporting evidence for our position that the WHO 2022 TEF values intended for use in human risk assessment of DLC mixtures will provide highly misleading overestimates of 'Toxic Equivalent Quotients' (TEQs), because of well-recognized striking differences in AHR ligand affinities between rodent (rat, mouse) and human. The data reviewed in our Commentary support the position that human tissue-derived estimates of REP/TEF values for individual DLC congeners, although uncertain, will provide much better, more realistic estimates of potential activation of the human AHR, when exposure to complex DLC mixtures occurs.


Asunto(s)
Receptores de Hidrocarburo de Aril , Especificidad de la Especie , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Humanos , Ligandos , Medición de Riesgo , Dioxinas/toxicidad , Bifenilos Policlorados/toxicidad , Ratas , Ratones
6.
Blood Adv ; 7(20): 6253-6265, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37477592

RESUMEN

In vitro models to study simultaneous development of different human immune cells and hematopoietic lineages are lacking. We identified and characterized, using single-cell methods, an in vitro stromal cell-free culture system of human hematopoietic stem and progenitor cell (HSPC) differentiation that allows concurrent development of multiple immune cell lineages. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor influencing many biological processes in diverse cell types. Using this in vitro model, we found that AHR activation by the highly specific AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin, drives differentiation of human umbilical cord blood-derived CD34+ HSPCs toward monocytes and granulocytes with a significant decrease in lymphoid and megakaryocyte lineage specification that may lead to reduced immune competence. To our knowledge, we also discovered for the first time, using single-cell modalities, that AHR activation decreased the expression of BCL11A and IRF8 in progenitor cells, which are critical genes involved in hematopoietic lineage specification processes at both transcriptomic and protein levels. Our in vitro model of hematopoiesis, coupled with single-cell tools, therefore allows for a better understanding of the role played by AHR in modulating hematopoietic differentiation.


Asunto(s)
Células Madre Hematopoyéticas , Receptores de Hidrocarburo de Aril , Humanos , Células Madre Hematopoyéticas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Ligandos , Hematopoyesis , Diferenciación Celular
8.
Toxicol Sci ; 193(2): 115-118, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37052529

RESUMEN

In November of 2021, the European Food Safety Authority (EFSA) released a draft scientific opinion on bisphenol A (BPA) exposure and health outcomes released to the public. EFSA concluded that the most sensitive outcome category to BPA exposure is the immune system. In this scientific opinion, EFSA utilized a weight of evidence approach to conclude that it is likely that BPA exposure promotes the development of TH17 cell-mediated atopic respiratory disease (eg, wheezing, rhinitis and asthma). Here, we present a dissenting analysis to that put forward in the draft EFSA scientific opinion and raise concerns about the studies and EFSA's interpretation of data that were used to arrive at their conclusion.


Asunto(s)
Inocuidad de los Alimentos , Fenoles , Fenoles/toxicidad , Fenoles/análisis , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/análisis , Sistema Inmunológico
9.
Arch Toxicol ; 97(6): 1813-1822, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029818

RESUMEN

The 1958 Delaney amendment to the Federal Food Drug and Cosmetics Act prohibited food additives causing cancer in animals by appropriate tests. Regulators responded by adopting chronic lifetime cancer tests in rodents, soon challenged as inappropriate, for they led to very inconsistent results depending on the subjective choice of animals, test design and conduct, and interpretive assumptions. Presently, decades of discussions and trials have come to conclude it is impossible to translate chronic animal data into verifiable prospects of cancer hazards and risks in humans. Such conclusion poses an existential crisis for official agencies in the US and abroad, which for some 65 years have used animal tests to justify massive regulations of alleged human cancer hazards, with aggregated costs of $trillions and without provable evidence of public health advantages. This article addresses suitable remedies for the US and potentially worldwide, by critically exploring the practices of regulatory agencies vis-á-vis essential criteria for validating scientific evidence. According to this analysis, regulations of alleged cancer hazards and risks have been and continue to be structured around arbitrary default assumptions at odds with basic scientific and legal tests of reliable evidence. Such practices raise a manifold ethical predicament for being incompatible with basic premises of the US Constitution, and with the ensuing public expectations of testable truth and transparency from government agencies. Potential remedies in the US include amendments to the US Administrative Procedures Act, preferably requiring agencies to justify regulations compliant with the Daubert opinion of the Daubert ruling of the US Supreme Court, which codifies the criteria defining reliable scientific evidence. International reverberations are bound to follow what remedial actions may be taken in the US, the origin of current world regulatory procedures to control alleged cancer causing agents.


Asunto(s)
Neoplasias , Salud Pública , Animales , Humanos , Estados Unidos , Carcinógenos/toxicidad , Neoplasias/inducido químicamente , Neoplasias/prevención & control
10.
Toxicology ; 488: 153469, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863504

RESUMEN

The United States Food and Drug Administration recently approved the use of Cannabis sativa derived cannabidiol (CBD) in the treatment of Dravet Syndrome and Lennox-Gastaut Syndrome, under the trade name, Epidiolex. In double-blinded, placebo-controlled clinical trials, elevated ALT levels were observed in some patients, but these findings could not be uncoupled from the confounds of potential drug-drug interactions with co-administration of valproate and clobazam. Given the uncertainty of the potential hepatatoxic effects of CBD, the objective of the present study was to determine a point of departure for CBD, using human HepaRG spheroid cultures, followed by transcriptomic benchmark dose analysis. Treatment of HepaRG spheroids with CBD for 24 and 72 h, resulted in EC50 concentrations for cytotoxicity of 86.27 µM and 58.04 µM, respectively. Subsequent transcriptomic analysis at these timepoints demonstrated little alteration of gene and pathway data sets at a CBD concentration at or below 10 µM. Although this current analysis was conducted using liver cells, interestingly the findings at 72 h post CBD treatment showed suppression of many genes more commonly associated with immune regulation. Indeed, the immune system is a well-established target for CBD based on immune function assays. Collectively, in the present studies a point of departure was derived using transcriptomic changes produced by CBD in a human cell-based model system, which has been shown to accurately translate to human hepatotoxicity modeling.


Asunto(s)
Cannabidiol , Enfermedad Hepática Inducida por Sustancias y Drogas , Síndrome de Lennox-Gastaut , Humanos , Anticonvulsivantes , Cannabidiol/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Síndrome de Lennox-Gastaut/tratamiento farmacológico , Convulsiones , Estados Unidos , Método Doble Ciego
11.
Food Chem Toxicol ; 170: 113458, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36228902

RESUMEN

Cannabis is well established as possessing immune modulating activity. The objective of this study was to evaluate the anti-inflammatory properties of selected cannabis-derived terpenes and cannabinoids. Based on their activity in cannabis-chemovar studies, α-pinene, trans-nerolidol, D-limonene, linalool and phytol were the selected terpenes evaluated. The cannabinoid compounds evaluated included cannabidivarin, cannabidiol, cannabinol, cannabichromene, cannabigerol and delta-9-tetrahydrocannabinol. Human PBMC were pretreated with each compound, individually, at concentrations extending from 0.001 to 10 µM and then stimulated with CpG (plasmacytoid dendritic cell), LPS (monocytes), or anti-CD3/CD28 (T cells). Proliferation, activation marker expression, cytokine production and phagocytosis, were quantified. Of the 21 responses assayed for each compound, cannabinoids showed the greatest immune modulating activity compared to their vehicle control. Delta-9-tetrahydrocannabinol possessed the greatest activity affecting 11 immune parameters followed by cannabidivarin, cannabigerol, cannabichromene, cannabinol and cannabidiol. α-Pinene showed the greatest immune modulating activity from the selected group of terpenes, followed by linalool, phytol, trans-nerolidol. Limonene had no effect on any of the parameters tested. Overall, these studies suggest that selected cannabis-derived terpenes displayed minimal immunological activity, while cannabinoids exhibited a broader range of activity. Compounds possessing anti-inflammatory effects may be useful in decreasing inflammation associated with a range of disorders, including neurodegenerative disorders.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Humanos , Terpenos/farmacología , Dronabinol/farmacología , Cannabinol , Leucocitos Mononucleares , Cannabinoides/farmacología , Fitol
12.
Front Immunol ; 13: 884203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558082

RESUMEN

Innate-like B cells (ILBs) are a heterogeneous population B cells which participate in innate and adaptive immune responses. This diverse subset of B cells is characterized by the expression of CD5 and has been shown to secrete high levels of immunoglobulin M (IgM) in the absence of infection or vaccination. Further, CD5+ ILBs have been shown to express high basal levels of lymphocyte specific protein tyrosine kinase (LCK) and programmed cell death protein-1 (PD-1), which are particularly sensitive to stimulation by interferon gamma (IFNγ). Previous studies have demonstrated that activation of the aryl hydrocarbon receptor (AHR), a cytosolic ligand-activated transcription factor, results in suppressed IgM responses and is dependent on LCK. A recent study showed that CD5+ ILBs are particularly sensitive to AHR activation as evidenced by a significant suppression of the IgM response compared to CD5- B cells, which were refractory. Therefore, the objective of this study was to further investigate the role of LCK and PD-1 signaling in AHR-mediated suppression of CD5+ ILBs. In addition, studies were conducted to establish whether IFNγ alters the levels of LCK and PD-1 in CD5+ ILBs. We found that AHR activation led to a significant upregulation of total LCK and PD-1 proteins in CD5+ ILBs, which correlated with suppression of IgM. Interestingly, treatment with recombinant IFNγ reduced LCK protein levels and reversed AHR-mediated IgM suppression in CD5+ ILBs in a similar manner as LCK inhibitors. Collectively, these results support a critical role for LCK and PD-1 in AHR-mediated suppression of the IgM response in human CD5+ ILBs.


Asunto(s)
Linfocitos B , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Dibenzodioxinas Policloradas , Receptor de Muerte Celular Programada 1 , Receptores de Hidrocarburo de Aril , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Humanos , Inmunoglobulina M/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo
13.
Toxicology ; 464: 153016, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34740670

RESUMEN

Cannabidiol (CBD) is a major non-euphoric cannabis-derived compound that has become popular in its over-the-counter use. CBD possesses low affinity for cannabinoid receptors, while the primary molecular target(s) by which it mediates biological activity remain poorly defined. Individuals commonly self-medicate using CBD products with little knowledge of its specific immunopharmacological effects on the human immune system; however, research has established primarily in rodent models that CBD possesses immune modulating properties. The objective of this study was to evaluate whether CBD modulates the innate immune response by human primary monocytes activated through toll-like receptors (TLR) 1-9. Monocytes were activated through each TLR and treated with CBD (0.5-10 µM) for 22 h. Monocyte secretion profiles for 13 immune mediators were quantified including: IL-4, IL-2, IP-10, IL-1ß, TNFα, MCP-1, IL-17a, IL-6, IL-10, IFNγ, IL-12p70, IL-8, and TGF-ß1. CBD treatment significantly suppressed secretion of proinflammatory cytokine IL-1ß by monocytes activated through most TLRs, apart from TLRs 3 and 8. Additionally, CBD treatment induced significant modulation of IL-6 production by monocytes activated through most TLRs, except for TLRs 1 and 3. Most other monocyte-derived factors assayed were refractory to CBD modulation. Overall, CBD selectively altered monocyte-derived IL-1ß and IL-6 when activated through most TLRs. This study is of particular importance as it provides a direct and comprehensive assessment of the effects of CBD on TLR-activated primary human monocytes at a time when CBD containing products are being widely used by the public.


Asunto(s)
Cannabidiol/farmacología , Citocinas/inmunología , Factores Inmunológicos/farmacología , Monocitos/efectos de los fármacos , Cannabidiol/administración & dosificación , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/administración & dosificación , Interleucina-1beta/inmunología , Interleucina-6/inmunología , Monocitos/inmunología , Receptores Toll-Like/inmunología
14.
Food Chem Toxicol ; 157: 112600, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34626752

RESUMEN

The popularity of cannabidiol (CBD) in consumer products is soaring as consumers are using CBD for general health and well-being as well as to seek relief from ailments especially pain, inflammation, anxiety, depression, and sleep disorders. However, there are limited data currently in the public domain that provide support for these benefits. By contrast, a significant amount of safety evaluation data for CBD have been obtained recently from pre-clinical and clinical studies of the CBD therapeutic Epidiolex®. Yet some key data gaps concerning the safe use of CBD still remain. Furthermore, current regulations on CBD use in consumer products remain uncertain and often conflict between the state and federal level. In light of the rapidly expanding popularity of CBD-related products in the marketplace, here we review the current understanding of the benefits, safety, and regulations surrounding CBD in consumer products. This review does not advocate for or against the use of CBD in consumer products. Rather this review seeks to assess the state-of-the-science on the health effects and safety of CBD, to identify critical knowledge gaps for future studies, and to raise the awareness of the current regulations that govern CBD use in consumer products.


Asunto(s)
Cannabidiol/uso terapéutico , Seguridad de Productos para el Consumidor , Control de Medicamentos y Narcóticos , Cannabidiol/efectos adversos , Humanos
15.
Sci Total Environ ; 797: 149130, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34311349

RESUMEN

Segmented filamentous bacteria (SFB) and Bacteroides fragilis are known to interact with the host immune response through the aryl hydrocarbon receptor (Ahr). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an environmental toxicant and a high-affinity Ahr ligand has the potential to modify the effect of SFB and B. fragilis. MicroRNAs (miRNA) with their role in regulating gene expression post-transcriptionally, may potentially be used to observe such interactions between SFB, B. fragilis, and TCDD. However, little is known regarding the impact of gut microbial members on miRNA expression or its modulation in the presence of an environmental toxicant. This information is important in understanding toxicant-mediated dysbiosis in gut microbiome and the resulting human health impacts. In this study, C57BL/6 germ-free (GF) mice were colonized with SFB and B. fragilis and administered 30 µg/kg TCDD every 4 d for 28 d and miRNA were measured. Compared to GF mice, colonization with SFB resulted in an increase in up- and down-regulated Ileal miRNAs. TCDD treatment of this group decreased the number of upregulated miRNA and increased the number of down-regulated miRNAs. Association with SFB and B. fragilis together had a similar but less pronounced effect in response to TCDD treatment. TCDD treatment of GF mice had no miRNA expression response. Immune and inflammatory responses and T-cell differentiation were the key functions impacted by these miRNAs. Overall, these results reveal that the host response to toxicants may also depend on the presence of specific gut microbial populations.


Asunto(s)
Microbioma Gastrointestinal , MicroARNs , Dibenzodioxinas Policloradas , Animales , Inmunidad , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/genética
16.
Adv Pharmacol ; 91: 1-59, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34099105

RESUMEN

The endocannabinoid system plays a critical role in immunity and therefore its components, including cannabinoid receptors 1 and 2 (CB1 and CB2), are putative druggable targets for immune-mediated diseases. Whether modulating endogenous cannabinoid levels or interacting with CB1 or CB2 receptors directly, cannabinoids or cannabinoid-based therapeutics (CBTs) show promise as anti-inflammatory or immune suppressive agents. Herein we provide an overview of cannabinoid effects in animals and humans that provide support for the use of CBTs in immune-mediated disease such as multiple sclerosis (MS), inflammatory bowel disease (IBD), asthma, arthritis, diabetes, human immunodeficiency virus (HIV), and HIV-associated neurocognitive disorder (HAND). This is not an exhaustive review of cannabinoid effects on immune responses, but rather provides: (1) key studies in which initial and/or novel observations were made in animal studies; (2) critical human studies including meta-analyses and randomized clinical trials (RCTs) in which CBTs have been assessed; and (3) evidence for the role of CB1 or CB2 receptors in immune-mediated diseases through genetic analyses of single nucleotide polymorphisms (SNPs) in the CNR1 and CNR2 genes that encode CB1 or CB2 receptors, respectively. Perhaps most importantly, we provide our view of data gaps that exist, which if addressed, would allow for more rigorous evaluation of the efficacy and risk to benefit ratio of the use of cannabinoids and/or CBTs for immune-mediated diseases.


Asunto(s)
Cannabinoides , Animales , Antiinflamatorios , Cannabinoides/uso terapéutico , Endocannabinoides , Humanos , Inmunidad , Inmunomodulación
17.
Front Immunol ; 12: 635748, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936048

RESUMEN

Xenobiotic-mediated activation of the aryl hydrocarbon receptor (AHR) is immunotoxic in a number of immune cell types, with the B cell being a well-established sensitive target. Recent advances have provided evidence that the B cell repertoire is a heterogeneous population, with subpopulations exhibiting vastly different cellular and functional phenotypes. Recent work from our laboratory identified the T cell specific kinase lck as being differentially regulated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a potent activator of AHR. While LCK is primarily expressed in T cells, a subset of CD5+ B cells also express LCK. CD5 positivity describes a broad class of B lymphocytes termed innate-like B cells (ILBs) that are critical mediators of innate immunity through constitutive secretion of polyvalent natural immunoglobulin M (IgM). We hypothesized that CD5+ ILBs may be sensitive to AHR-mediated immunotoxicity. Indeed, when CD5+ B cells were isolated from the CD19+ pool and treated with TCDD, they showed increased suppression of the CD40 ligand-induced IgM response compared to CD5- B cells. Further, characterization of the CD5+ population indicated increased basal expression of AHR, AHR repressor (AHRR), and cytochrome p450 family 1 member a1 (CYP1A1). Indeed the levels of AHR-mediated suppression of the IgM response from individual donors strongly correlated with the percentage of the B cell pool that was CD5+, suggesting that CD5+ B cells are more sensitive to AHR-mediated impairment. Together these data highlight the sensitive nature of CD5+ ILBs to AHR activation and provide insight into mechanisms associated with AHR activation in human B cells.


Asunto(s)
Subgrupos de Linfocitos B/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Antígenos CD5/metabolismo , Inmunidad Innata/efectos de los fármacos , Inmunoglobulina M/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/agonistas , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Antígenos CD5/genética , Células Cultivadas , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Humanos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Fenotipo , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
18.
Toxicol Sci ; 180(2): 197, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33582818
19.
J Leukoc Biol ; 110(1): 123-140, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33205494

RESUMEN

Translocator protein 18 kDa (TSPO) is a well-known outer mitochondrial membrane protein and it is widely used as a biomarker of neuroinflammation and brain injury. Although it is thought that TSPO plays key roles in a multitude of host cell functions, including steroid biosynthesis, apoptosis, generation of reactive oxygen species, and proliferation, some of these functions have recently been questioned. Here, we report the unexpected finding that circulating immune cells differentially express basal levels of TSPO on their cell surface, with a high percentage of monocytes and neutrophils expressing cell surface TSPO. In vitro stimulation of monocytes with LPS significantly increases the frequency of cells with surface TSPO expression in the absence of altered gene expression. Importantly, the LPS increase in TSPO cell surface expression in monocytes appears to be selective for LPS because two other distinct monocyte activators failed to increase the frequency of cells with surface TSPO. Finally, when we quantified immune cell TSPO surface expression in antiretroviral therapy-treated HIV+ donors, a chronic inflammatory disease, we found significant increases in the frequency of TSPO surface localization, which could be pharmacologically suppressed with ∆9 -tetrahydrocannabinol. These findings suggest that cell surface TSPO in circulating leukocytes could serve as a peripheral blood-based biomarker of inflammation.


Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Lipopolisacáridos/efectos adversos , Receptores de GABA/metabolismo , Animales , Terapia Antirretroviral Altamente Activa , Apoptosis , Biomarcadores , Susceptibilidad a Enfermedades , Infecciones por VIH/tratamiento farmacológico , Humanos , Inflamación/etiología , Inflamación/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Receptores de GABA/genética
20.
Chemosphere ; 264(Pt 1): 128420, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33032214

RESUMEN

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic and persistent organic pollutant found in soils and sediments. It has been linked to several adverse health outcomes in humans and wildlife, including suppression of the immune system. TCDD is strongly sorbed to soils/sediments due to its extremely low water solubility. Presently, the bioavailability of soil/sediment-sorbed TCDD to mammals is not completely understood. Our previous studies demonstrated that TCDD adsorbed to representative inorganic geosorbents (i.e. porous silica and smectite clay) exhibited the same bioavailability to mice as TCDD dissolved in corn oil, whereas sequestration by activated carbons eliminated TCDD bioavailability. In this study, we evaluated the effects of amorphous natural organic matter (NOM), primarily in the form of aquatic humic and fulvic acids, on the mouse bioavailability of TCDD. An aqueous suspension of TCDD mixed with NOM was administered to mice via oral gavage. The relative bioavailability of TCDD was assessed by two sensitive aryl hydrocarbon receptor-mediated responses in mice: 1) hepatic induction of cyp1A1 mRNA; and 2) suppression of immunoglobulin M (IgM) antibody-forming cell (AFC) response which is an indicator of immunotoxicity. Hepatic induction of cyp1A1 mRNA and suppression of IgM AFC induced by TCDD were similar in the NOM-sorbed form and dissolved in corn oil, revealing no loss of bioavailability when associated with NOM. Hence, NOM-associated TCDD is as capable of suppressing humoral immunity in mice as TCDD dissolved in corn oil, indicating that NOM-sorbed TCDD is likely to fully retain its bioavailability to mammals and, by inference, humans.


Asunto(s)
Dibenzodioxinas Policloradas , Animales , Disponibilidad Biológica , Carbón Orgánico , Citocromo P-450 CYP1A1/metabolismo , Mamíferos/metabolismo , Ratones , Receptores de Hidrocarburo de Aril , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA