Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEBS J ; 290(11): 2968-2992, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36629470

RESUMEN

Cyclic di-AMP is an essential signalling molecule in Gram-positive bacteria. This second messenger regulates the osmotic pressure of the cell by interacting directly with the regulatory domains, either RCK_C or CBS domains, of several potassium and osmolyte uptake membrane protein systems. Cyclic di-AMP also targets stand-alone CBS domain proteins such as DarB in Bacillus subtilis and CbpB in Listeria monocytogenes. We show here that the CbpB protein of Group B Streptococcus binds c-di-AMP with a very high affinity. Crystal structures of CbpB reveal the determinants of binding specificity and significant conformational changes occurring upon c-di-AMP binding. Deletion of the cbpB gene alters bacterial growth in low potassium conditions most likely due to a decrease in the amount of ppGpp caused by a loss of interaction between CbpB and Rel, the GTP/GDP pyrophosphokinase.


Asunto(s)
Proteínas Portadoras , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Guanosina Pentafosfato , Guanosina Tetrafosfato , Proteínas Bacterianas/metabolismo , AMP Cíclico , Fosfatos de Dinucleósidos/metabolismo , Potasio/metabolismo
2.
Med Sci (Paris) ; 38(4): 374-380, 2022 Apr.
Artículo en Francés | MEDLINE | ID: mdl-35485898

RESUMEN

Bacteriophage genomes are the richest source of modified nucleobases of any life form. Of these, 2,6-diaminopurine (2-aminoadénine) that pairs with thymine by forming three hydrogen bonds is the only one violating Watson and Crick's base pairing. 2,6-diaminopurine (2-aminoadénine), initially found in the cyanophage S-2L, is more widespread than expected and has also been detected in bacteriophage infecting Gram-negative and Gram-positive bacteria. The biosynthetic pathway for aminoadenine containing DNA as well as the exclusion of adenine are now elucidated. This example of a natural deviation from the DNA canonical nucleotides represents only one of the possibilities explored by nature and provides a proof of concept for the synthetic biology of non-canonical nucleic acids.


Title: L'alphabet génétique élargi - Une déviation explorée par la nature chez une famille de bactériophages. Abstract: Les génomes de bactériophages constituent la source la plus riche de nucléobases modifiées de toutes les formes de vie. Parmi celles-ci, la 2,6-diaminopurine (ou 2-aminoadénine), qui s'apparie avec la thymine en formant trois liaisons hydrogène, viole l'appariement des bases de Watson et Crick. La 2-aminoadénine, initialement trouvée dans le cyanophage S-2L, a également été détectée dans des bactériophages infectant des bactéries Gram-négatives et Gram-positives. La voie de biosynthèse de l'ADN contenant de la 2-aminoadénine ainsi que le mécanisme d'exclusion de l'adénine sont maintenant élucidés. Cet exemple de déviation naturelle d'un nucléotide de l'ADN ne représente qu'une des possibilités explorées par la nature et apporte une preuve de concept pour la biologie de synthèse d'acides nucléiques non canoniques.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Emparejamiento Base , ADN/química , Humanos , Enlace de Hidrógeno , Timina
3.
PLoS Genet ; 17(9): e1009761, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34491998

RESUMEN

Virulence of the neonatal pathogen Group B Streptococcus is under the control of the master regulator CovR. Inactivation of CovR is associated with large-scale transcriptome remodeling and impairs almost every step of the interaction between the pathogen and the host. However, transcriptome analyses suggested a plasticity of the CovR signaling pathway in clinical isolates leading to phenotypic heterogeneity in the bacterial population. In this study, we characterized the CovR regulatory network in a strain representative of the CC-17 hypervirulent lineage responsible of the majority of neonatal meningitis. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR network characterized by the direct repression of a large array of virulence-associated genes and the extent of co-regulation at specific loci. Comparative functional analysis of the signaling network links strain-specificities to the regulation of the pan-genome, including the two specific hypervirulent adhesins and horizontally acquired genes, to mutations in CovR-regulated promoters, and to variability in CovR activation by phosphorylation. This regulatory adaptation occurs at the level of genes, promoters, and of CovR itself, and allows to globally reshape the expression of virulence genes. Overall, our results reveal the direct, coordinated, and strain-specific regulation of virulence genes by the master regulator CovR and suggest that the intra-species evolution of the signaling network is as important as the expression of specific virulence factors in the emergence of clone associated with specific diseases.


Asunto(s)
Proteínas Bacterianas/fisiología , Redes Reguladoras de Genes , Streptococcus agalactiae/patogenicidad , Factores de Virulencia/fisiología , Virulencia/genética , Proteínas Bacterianas/genética , Cromosomas Bacterianos , Genes Bacterianos , Interacciones Huésped-Patógeno , Humanos , Regiones Promotoras Genéticas , Profagos/genética , Streptococcus agalactiae/genética , Transcripción Genética/fisiología , Factores de Virulencia/genética
4.
Nat Commun ; 12(1): 4710, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354070

RESUMEN

Cyanophage S-2L is known to profoundly alter the biophysical properties of its DNA by replacing all adenines (A) with 2-aminoadenines (Z), which still pair with thymines but with a triple hydrogen bond. It was recently demonstrated that a homologue of adenylosuccinate synthetase (PurZ) and a dATP triphosphohydrolase (DatZ) are two important pieces of the metabolism of 2-aminoadenine, participating in the synthesis of ZTGC-DNA. Here, we determine that S-2L PurZ can use either dATP or ATP as a source of energy, thereby also depleting the pool of nucleotides in dATP. Furthermore, we identify a conserved gene (mazZ) located between purZ and datZ genes in S-2L and related phage genomes. We show that it encodes a (d)GTP-specific diphosphohydrolase, thereby providing the substrate of PurZ in the 2-aminoadenine synthesis pathway. High-resolution crystal structures of S-2L PurZ and MazZ with their respective substrates provide a rationale for their specificities. The Z-cluster made of these three genes - datZ, mazZ and purZ - was expressed in E. coli, resulting in a successful incorporation of 2-aminoadenine in the bacterial chromosomal and plasmidic DNA. This work opens the possibility to study synthetic organisms containing ZTGC-DNA.


Asunto(s)
ADN Bacteriano/genética , Genes Virales , Siphoviridae/genética , 2-Aminopurina/análogos & derivados , 2-Aminopurina/metabolismo , Adenilosuccinato Sintasa/química , Adenilosuccinato Sintasa/genética , Adenilosuccinato Sintasa/metabolismo , Bacteriófagos , Emparejamiento Base , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Desoxiadenosinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Viral , Redes y Vías Metabólicas , Modelos Moleculares , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Podoviridae/clasificación , Podoviridae/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Siphoviridae/clasificación , Electricidad Estática , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Science ; 372(6541): 516-520, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33926955

RESUMEN

Cells have two purine pathways that synthesize adenine and guanine ribonucleotides from phosphoribose via inosylate. A chemical hybrid between adenine and guanine, 2-aminoadenine (Z), replaces adenine in the DNA of the cyanobacterial virus S-2L. We show that S-2L and Vibrio phage PhiVC8 encode a third purine pathway catalyzed by PurZ, a distant paralog of succinoadenylate synthase (PurA), the enzyme condensing aspartate and inosylate in the adenine pathway. PurZ condenses aspartate with deoxyguanylate into dSMP (N6-succino-2-amino-2'-deoxyadenylate), which undergoes defumarylation and phosphorylation to give dZTP (2-amino-2'-deoxyadenosine-5'-triphosphate), a substrate for the phage DNA polymerase. Crystallography and phylogenetics analyses indicate a close relationship between phage PurZ and archaeal PurA enzymes. Our work elucidates the biocatalytic innovation that remodeled a DNA building block beyond canonical molecular biology.


Asunto(s)
2-Aminopurina/análogos & derivados , Adenilosuccinato Sintasa/química , Bacteriófagos/química , Bacteriófagos/enzimología , Vías Biosintéticas , ADN Viral/química , Proteínas no Estructurales Virales/química , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenilosuccinato Sintasa/clasificación , Adenilosuccinato Sintasa/genética , Bacteriófagos/genética , Cristalografía por Rayos X , ADN Viral/genética , Genoma Viral , Filogenia , Proteínas no Estructurales Virales/clasificación , Proteínas no Estructurales Virales/genética
6.
Science ; 372(6541): 520-524, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33926956

RESUMEN

Bacteriophage genomes harbor the broadest chemical diversity of nucleobases across all life forms. Certain DNA viruses that infect hosts as diverse as cyanobacteria, proteobacteria, and actinobacteria exhibit wholesale substitution of aminoadenine for adenine, thereby forming three hydrogen bonds with thymine and violating Watson-Crick pairing rules. Aminoadenine-encoded DNA polymerases, homologous to the Klenow fragment of bacterial DNA polymerase I that includes 3'-exonuclease but lacks 5'-exonuclease, were found to preferentially select for aminoadenine instead of adenine in deoxynucleoside triphosphate incorporation templated by thymine. Polymerase genes occur in synteny with genes for a biosynthesis enzyme that produces aminoadenine deoxynucleotides in a wide array of Siphoviridae bacteriophages. Congruent phylogenetic clustering of the polymerases and biosynthesis enzymes suggests that aminoadenine has propagated in DNA alongside adenine since archaic stages of evolution.


Asunto(s)
2-Aminopurina/análogos & derivados , Replicación del ADN , ADN Viral/biosíntesis , ADN Polimerasa Dirigida por ADN/química , Polimerizacion , Siphoviridae/química , Siphoviridae/enzimología , Proteínas no Estructurales Virales/química , 2-Aminopurina/química , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/genética , Genoma Viral , Filogenia , Siphoviridae/genética , Proteínas no Estructurales Virales/clasificación , Proteínas no Estructurales Virales/genética
7.
Nat Commun ; 12(1): 2420, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893297

RESUMEN

Bacteriophages have long been known to use modified bases in their DNA to prevent cleavage by the host's restriction endonucleases. Among them, cyanophage S-2L is unique because its genome has all its adenines (A) systematically replaced by 2-aminoadenines (Z). Here, we identify a member of the PrimPol family as the sole possible polymerase of S-2L and we find it can incorporate both A and Z in front of a T. Its crystal structure at 1.5 Å resolution confirms that there is no structural element in the active site that could lead to the rejection of A in front of T. To resolve this contradiction, we show that a nearby gene is a triphosphohydolase specific of dATP (DatZ), that leaves intact all other dNTPs, including dZTP. This explains the absence of A in S-2L genome. Crystal structures of DatZ with various ligands, including one at sub-angstrom resolution, allow to describe its mechanism as a typical two-metal-ion mechanism and to set the stage for its engineering.


Asunto(s)
2-Aminopurina/análogos & derivados , Adenina/química , Bacteriófagos/genética , Cianobacterias/virología , ADN Viral/química , Synechococcus/virología , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenina/metabolismo , Bacteriófagos/metabolismo , Sitios de Unión/genética , Biocatálisis , ADN Primasa/química , ADN Primasa/genética , ADN Primasa/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Dominios Proteicos , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
PLoS Genet ; 14(4): e1007342, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29659565

RESUMEN

Cyclic nucleotides are universally used as secondary messengers to control cellular physiology. Among these signalling molecules, cyclic di-adenosine monophosphate (c-di-AMP) is a specific bacterial second messenger recognized by host cells during infections and its synthesis is assumed to be necessary for bacterial growth by controlling a conserved and essential cellular function. In this study, we sought to identify the main c-di-AMP dependent pathway in Streptococcus agalactiae, the etiological agent of neonatal septicaemia and meningitis. By conditionally inactivating dacA, the only diadenyate cyclase gene, we confirm that c-di-AMP synthesis is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable due to the accumulation of compensatory mutations. We identified several mutations restoring the viability of a ΔdacA mutant, in particular a loss-of-function mutation in the osmoprotectant transporter BusAB. Identification of c-di-AMP binding proteins revealed a conserved set of potassium and osmolyte transporters, as well as the BusR transcriptional factor. We showed that BusR negatively regulates busAB transcription by direct binding to the busAB promoter. Loss of BusR repression leads to a toxic busAB expression in absence of c-di-AMP if osmoprotectants, such as glycine betaine, are present in the medium. In contrast, deletion of the gdpP c-di-AMP phosphodiesterase leads to hyperosmotic susceptibility, a phenotype dependent on a functional BusR. Taken together, we demonstrate that c-di-AMP is essential for osmotic homeostasis and that the predominant mechanism is dependent on the c-di-AMP binding transcriptional factor BusR. The regulation of osmotic homeostasis is likely the conserved and essential function of c-di-AMP, but each species has evolved specific c-di-AMP mechanisms of osmoregulation to adapt to its environment.


Asunto(s)
Fosfatos de Dinucleósidos/metabolismo , Osmorregulación/fisiología , Streptococcus agalactiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genes Bacterianos , Homeostasis/fisiología , Interacciones Huésped-Patógeno/fisiología , Humanos , Mutación , Osmorregulación/genética , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Potasio/metabolismo , Sistemas de Mensajero Secundario/fisiología , Streptococcus agalactiae/genética , Streptococcus agalactiae/crecimiento & desarrollo
9.
Curr Opin Microbiol ; 41: 21-28, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29169058

RESUMEN

Cyclic di-AMP (c-di-AMP) is a bacterial signaling nucleotide synthesized by several human pathogens. This widespread and specific bacterial product is recognized by infected host cells to trigger an innate immune response. Detection of c-di-AMP in the host cytosol leads primarily to the induction of type I interferon via the STING-cGAS signaling axis, while being also entangled in the activation of the NF-κB pathway. During their long-standing interaction, host and pathogens have co-evolved to control c-di-AMP activation of innate immunity. On the bacterial side, the quantity of c-di-AMP released inside cells allows to manipulate the host response to exacerbate infection by avoiding immune recognition or, at the opposite, by overloading the STING-cGAS pathway.


Asunto(s)
Bacterias/metabolismo , AMP Cíclico/metabolismo , Interacciones Huésped-Patógeno/fisiología , Animales , Bacterias/crecimiento & desarrollo , Bacterias/inmunología , Bacterias/patogenicidad , AMP Cíclico/biosíntesis , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Macrófagos/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Nucleotidiltransferasas/metabolismo , Transducción de Señal/inmunología , Transducción de Señal/fisiología
10.
Nat Commun ; 8(1): 2065, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29234007

RESUMEN

Secreted exopolysaccharides present important determinants for bacterial biofilm formation, survival, and virulence. Cellulose secretion typically requires the concerted action of a c-di-GMP-responsive inner membrane synthase (BcsA), an accessory membrane-anchored protein (BcsB), and several additional Bcs components. Although the BcsAB catalytic duo has been studied in great detail, its interplay with co-expressed subunits remains enigmatic. Here we show that E. coli Bcs proteins partake in a complex protein interaction network. Electron microscopy reveals a stable, megadalton-sized macromolecular assembly, which encompasses most of the inner membrane and cytosolic Bcs components and features a previously unobserved asymmetric architecture. Heterologous reconstitution and mutational analyses point toward a structure-function model, where accessory proteins regulate secretion by affecting both the assembly and stability of the system. Altogether, these results lay the foundation for more comprehensive models of synthase-dependent exopolysaccharide secretion in biofilms and add a sophisticated secretory nanomachine to the diverse bacterial arsenal for virulence and adaptation.


Asunto(s)
Sistemas de Secreción Bacterianos/metabolismo , Celulosa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de la Membrana/metabolismo , Adaptación Fisiológica/fisiología , Sistemas de Secreción Bacterianos/química , Biopelículas , GMP Cíclico/metabolismo , Análisis Mutacional de ADN , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/ultraestructura , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/ultraestructura , Microscopía Electrónica , Modelos Biológicos , Unión Proteica , Dominios Proteicos/fisiología , Mapas de Interacción de Proteínas/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Programas Informáticos , Relación Estructura-Actividad
11.
Phytochemistry ; 136: 156-164, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28153445

RESUMEN

Cytokinin ribosides (N6-substituted adenosines) have demonstrated anticancer activity in various cultured cell lines, several xenografts and even a small clinical trial. Effects of kinetin riboside, N6-benzyladenosine (BAR) and N6-isopentenyladenosine on various parameters related to apoptosis have also been reported, but not directly compared with those of the highly active naturally occurring aromatic cytokinins oTR (ortho-topolin riboside) and 2OH3MeOBAR (N6-(2-hydroxy-3-methoxybenzyl)adenosine). Here we show that 2OH3MeOBAR is the most active cytokinin riboside studied to date (median, 1st quartile, 3rd quartile and range of GI50 in tests with the NCI60 cell panel: 0.19, 0.10, 0.43 and 0.02 to 15.7 µM, respectively) and it differs from other cytokinins by inducing cell death without causing pronounced ATP depletion. Analysis of NCI60 test data suggests that its activity is independent of p53 status. Further we demonstrate that its 5'-monophosphate, the dominant cancer cell metabolite, inhibits the candidate oncogene DNPH1. Synthesis, purification, HPLC-MS identification and HPLC-UV quantification of 2OH3MeOBAR metabolites are also reported.


Asunto(s)
Adenosina/farmacología , Citocininas/farmacología , Adenosina/análogos & derivados , Adenosina/química , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Citocininas/química , Glicósidos/farmacología , Isopenteniladenosina/farmacología , Cinetina/farmacología , Estructura Molecular
12.
Cell Host Microbe ; 20(1): 49-59, 2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27414497

RESUMEN

Induction of type I interferon (IFN) in response to microbial pathogens depends on a conserved cGAS-STING signaling pathway. The presence of DNA in the cytoplasm activates cGAS, while STING is activated by cyclic dinucleotides (cdNs) produced by cGAS or from bacterial origins. Here, we show that Group B Streptococcus (GBS) induces IFN-ß production almost exclusively through cGAS-STING-dependent recognition of bacterial DNA. However, we find that GBS expresses an ectonucleotidase, CdnP, which hydrolyzes extracellular bacterial cyclic-di-AMP. Inactivation of CdnP leads to c-di-AMP accumulation outside the bacteria and increased IFN-ß production. Higher IFN-ß levels in vivo increase GBS killing by the host. The IFN-ß overproduction observed in the absence of CdnP is due to the cumulative effect of DNA sensing by cGAS and STING-dependent sensing of c-di-AMP. These findings describe the importance of a bacterial c-di-AMP ectonucleotidase and suggest a direct bacterial mechanism that dampens activation of the cGAS-STING axis.


Asunto(s)
Fosfatos de Dinucleósidos/metabolismo , Evasión Inmune , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Pirofosfatasas/metabolismo , Streptococcus agalactiae/inmunología , Streptococcus agalactiae/metabolismo , Biotransformación , Streptococcus agalactiae/enzimología
13.
Mol Microbiol ; 101(1): 27-41, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26888569

RESUMEN

Streptococcus agalactiae (Group B Streptococcus or GBS) is a leading cause of invasive infections in neonates whose virulence is dependent on its ability to interact with cells and host components. We here characterized a surface protein with a critical function in GBS pathophysiology. This adhesin, designated PbsP, possesses two Streptococcal Surface Repeat domains, a methionine and lysine-rich region, and a LPXTG cell wall-anchoring motif. PbsP mediates plasminogen (Plg) binding both in vitro and in vivo and we showed that cell surface-bound Plg can be activated into plasmin by tissue plasminogen activator to increase the bacterial extracellular proteolytic activity. Absence of PbsP results in a decreased bacterial transmigration across brain endothelial cells and impaired virulence in a murine model of infection. PbsP is conserved among the main GBS lineages and is a major plasminogen adhesin in non-CC17 GBS strains. Importantly, immunization of mice with recombinant PbsP confers protective immunity. Our results indicate that GBS have evolved different strategies to recruit Plg which indicates that the ability to acquire cell surface proteolytic activity is essential for the invasiveness of this bacterium.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Plasminógeno/metabolismo , Streptococcus agalactiae/metabolismo , Secuencia de Aminoácidos , Animales , Adhesión Bacteriana/fisiología , Pared Celular/metabolismo , Células Endoteliales/metabolismo , Fibrinolisina/metabolismo , Humanos , Ratones , Unión Proteica , Infecciones Estreptocócicas/microbiología , Streptococcus/metabolismo , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidad , Virulencia
14.
Eur J Med Chem ; 85: 418-37, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25108359

RESUMEN

The 2'-deoxynucleoside 5'-phosphate N-hydrolase 1 (DNPH1) has been proposed as a new molecular target for cancer treatment. Here, we describe the synthesis of a series of novel 6-aryl- and 6-heteroarylpurine riboside 5'-monophosphates via Suzuki-Miyaura cross-coupling reactions, and their ability to inhibit recombinant rat and human DNPH1. Enzymatic inhibition studies revealed competitive inhibitors in the low micromolar range. Crystal structures of human and rat DNPH1 in complex with one nucleotide from this series, the 6-naphthylpurine derivative, provided detailed structural information, in particular regarding the possible conformations of a long and flexible loop wrapping around the large hydrophobic substituent. Taking advantage of these high-resolution structures, we performed virtual docking studies in order to evaluate enzyme-inhibitor interactions for the whole compound series. Among the synthesized compounds, several molecules exhibited significant in vitro cytotoxicity against human colon cancer (HCT15, HCT116) and human promyelocytic leukemia (HL60) cell lines with IC50 values in the low micromolar range, which correlated with in vitro DNPH1 inhibitory potency.


Asunto(s)
Diseño de Fármacos , Terapia Molecular Dirigida , N-Glicosil Hidrolasas/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Nucleótidos de Purina/síntesis química , Nucleótidos de Purina/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Técnicas de Química Sintética , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Simulación del Acoplamiento Molecular , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación Proteica , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Nucleótidos de Purina/química , Nucleótidos de Purina/metabolismo , Ratas , Relación Estructura-Actividad
15.
J Biol Chem ; 289(9): 5479-89, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24429288

RESUMEN

Streptococcus agalactiae (Group B Streptococcus) is a commensal of the human intestine and vagina of adult women but is the leading cause of invasive infection in neonates. This Gram-positive bacterium displays a set of virulence-associated surface proteins involved in the interaction with the host, such as adhesion to host cells, invasion of tissues, or subversion of the immune system. In this study, we characterized a cell wall-localized protein as an ecto-5'-nucleoside diphosphate phosphohydrolase (NudP) involved in the degradation of extracellular nucleotides which are central mediators of the immune response. Biochemical characterization of recombinant NudP revealed a Mn(2+)-dependent ecto-5'-nucleotidase activity on ribo- and deoxyribonucleoside 5'-mono- and 5'-diphosphates with a substrate specificity different from that of known orthologous enzymes. Deletion of the gene coding the housekeeping enzyme sortase A led to the release of NudP into the culture supernatant, confirming that this enzyme is anchored to the cell wall by its non-canonical LPXTN motif. The NudP ecto-5'-nucleotidase activity is reminiscent of the reactions performed by the mammalian ectonucleotidases CD39 and CD73 involved in regulating the extracellular level of ATP and adenosine. We further demonstrated that the absence of NudP activity decreases bacterial survival in mouse blood, a process dependent on extracellular adenosine. In vivo assays in animal models of infection showed that NudP activity is critical for virulence. These results demonstrate that Group B Streptococcus expresses a specific ecto-5'-nucleotidase necessary for its pathogenicity and highlight the diversity of reactions performed by this enzyme family. These results suggest that bacterial pathogens have developed specialized strategies to subvert the mammalian immune response controlled by the extracellular nucleotide signaling pathways.


Asunto(s)
Adenosina/metabolismo , Viabilidad Microbiana , N-Glicosil Hidrolasas/metabolismo , Streptococcus agalactiae/enzimología , Adenosina/genética , Secuencias de Aminoácidos , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/inmunología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Streptococcus agalactiae/genética , Streptococcus agalactiae/inmunología
16.
PLoS One ; 8(11): e80755, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260472

RESUMEN

The gene dnph1 (or rcl) encodes a hydrolase that cleaves the 2'-deoxyribonucleoside 5'-monophosphate (dNMP) N-glycosidic bond to yield a free nucleobase and 2-deoxyribose 5-phosphate. Recently, the crystal structure of rat DNPH1, a potential target for anti-cancer therapies, suggested that various analogs of AMP may inhibit this enzyme. From this result, we asked whether N (6)-substituted AMPs, and among them, cytotoxic cytokinin riboside 5'-monophosphates, may inhibit DNPH1. Here, we characterized the structural and thermodynamic aspects of the interactions of these various analogs with DNPH1. Our results indicate that DNPH1 is inhibited by cytotoxic cytokinins at concentrations that inhibit cell growth.


Asunto(s)
Adenosina Monofosfato/farmacología , N-Glicosil Hidrolasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Activación Enzimática/efectos de los fármacos , Humanos , Cinética , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Ratas , Alineación de Secuencia , Termodinámica
17.
Biochemistry ; 52(23): 4037-47, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23659472

RESUMEN

MilB is a CMP hydrolase involved in the early steps of biosynthesis of the antifungal compound mildiomycin. An enzyme from the bacimethrin biosynthetic pathway, BcmB, is closely related to MilB in both sequence and function. These two enzymes belong to the nucleoside 2'-deoxyribosyltransferase (NDT) superfamily. NDTs catalyze N-glycosidic bond cleavage of 2'-deoxynucleosides via a covalent 2-deoxyribosyl-enzyme intermediate. Conservation of key active site residues suggests that members of the NDT superfamily share a common mechanism; however, the enzymes differ in their substrate preferences. Substrates vary in the type of nucleobase, the presence or absence of a 2'-hydroxyl group, and the presence or absence of a 5'-phosphate group. We have determined the structures of MilB and BcmB and compared them to previously determined structures of NDT superfamily members. The comparisons reveal how these enzymes differentiate between ribosyl and deoxyribosyl nucleotides or nucleosides and among different nucleobases. The 1.6 Å structure of the MilB-CMP complex reveals an active site feature that is not obvious from comparisons of sequence alone. MilB and BcmB that prefer substrates containing 2'-ribosyl groups have a phenylalanine positioned in the active site, whereas NDT family members with a preference for 2'-deoxyribosyl groups have a tyrosine residue. Further studies show that the phenylalanine is critical for the specificity of MilB and BcmB toward CMP, and mutation of this phenylalanine residue to tyrosine results in a 1000-fold reversal of substrate specificity from CMP to dCMP.


Asunto(s)
Proteínas Bacterianas/química , Clostridium botulinum tipo A/enzimología , Desoxicitidina Monofosfato/química , Pentosiltransferasa/química , Streptomyces/enzimología , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Pentosiltransferasa/genética , Estructura Secundaria de Proteína , Homología Estructural de Proteína , Especificidad por Sustrato
18.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 2): 247-55, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23385460

RESUMEN

Rcl is a novel N-glycoside hydrolase found in mammals that shows specificity for the hydrolysis of 5'-monophosphate nucleotides. Its role in nucleotide catabolism and the resulting production of 2-deoxyribose 5-phosphate has suggested that it might fuel cancer growth. Its expression is regulated by c-Myc, but its role as an oncoprotein remains to be clarified. In parallel, various nucleosides have been shown to acquire pro-apoptotic properties upon 5'-monophosphorylation in cells. These include triciribine, a tricyclic nucleoside analogue that is currently in clinical trials in combination with a farnesyltransferase inhibitor. Similarly, an N(6)-alkyl-AMP has been shown to be cytotoxic. Interestingly, Rcl has been shown to be inhibited by such compounds in vitro. In order to gain better insight into the precise ligand-recognition determinants, the crystallization of Rcl with these nucleotide analogues was attempted. The first crystal structure of Rcl was solved by molecular replacement using its NMR structure in combination with distantly related crystal structures. The structures of Rcl bound to two other nucleotides were then solved by molecular replacement using the previous crystal structure as a template. The resulting structures, solved at high resolution, led to a clear characterization of the protein-ligand interactions that will guide further rational drug design.


Asunto(s)
N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/metabolismo , Nucleótidos/química , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Acenaftenos/química , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Cristalización , Ligandos , Datos de Secuencia Molecular , N-Glicosil Hidrolasas/genética , Nucleótidos/genética , Proteínas Oncogénicas/genética , Organofosfonatos/química , Fosforilación , Unión Proteica/genética , Mapeo de Interacción de Proteínas/métodos , Ratas , Ribonucleótidos/química , Ribonucleótidos/genética , Tionucleótidos/química , Tionucleótidos/genética , Timidina/análogos & derivados , Timidina/química , Timidina/genética , Difracción de Rayos X
19.
J Biol Chem ; 288(9): 6534-41, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23325804

RESUMEN

A large number of nucleoside analogues and 2'-deoxynucleoside triphosphates (dNTP) have been synthesized to interfere with DNA metabolism. However, in vivo the concentration and phosphorylation of these analogues are key limiting factors. In this context, we designed enzymes to switch nucleobases attached to a deoxyribose monophosphate. Active chimeras were made from two distantly related enzymes: a nucleoside deoxyribosyltransferase from lactobacilli and a 5'-monophosphate-2'-deoxyribonucleoside hydrolase from rat. Then their unprecedented activity was further extended to deoxyribose triphosphate, and in vitro biosyntheses could be successfully performed with several base analogues. These new enzymes provide new tools to synthesize dNTP analogues and to deliver them into cells.


Asunto(s)
Proteínas Bacterianas/química , Desoxirribonucleótidos/química , Lactobacillus/enzimología , Pentosiltransferasa/química , Proteínas Recombinantes de Fusión/química , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Desoxirribonucleótidos/metabolismo , Lactobacillus/genética , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
20.
J Biol Chem ; 285(53): 41806-14, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20962348

RESUMEN

Rcl is a potential anti-angiogenic therapeutic target that hydrolyzes the N-glycosidic bond of 2'-deoxyribonucleoside 5'-monophosphate, yielding 2-deoxyribose 5-phosphate and the corresponding base. Its recently elucidated solution structure provided the first insight into the molecular basis for the substrate recognition. To facilitate the development of potent and specific inhibitors of Rcl, the active site was probed by site-directed mutagenesis and by the use of substrate analogs. The nucleobase shows weak interactions with the protein, and the deoxyribose binding pocket includes the catalytic triad Tyr-13, Asp-69, and Glu-93 and the phosphate binding site Ser-87 and Ser-117. The phosphomimetic mutation of Ser-17 to Glu prevents substrate binding and, thus, abolishes the activity of Rcl. The synthetic ligand-based analysis of the Rcl binding site shows that substitutions at positions 2 and 6 of the nucleobase as well as large heterocycles are well tolerated. The phosphate group at position 5 of the (deoxy)ribose moiety is the critical binding determinant. This study provides the roadmap for the design of small molecules inhibitors with pharmacological properties.


Asunto(s)
N-Glicosil Hidrolasas/química , Proteínas Nucleares/química , Proteínas Proto-Oncogénicas/química , Alanina/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Catálisis , Dominio Catalítico , Ácido Glutámico/química , Cinética , Datos de Secuencia Molecular , N-Glicosil Hidrolasas/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Homología de Secuencia de Aminoácido , Serina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...