Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Sci ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802068

RESUMEN

Senescent cells promote cancer development and progression through chronic inflammation caused by a senescence-associated secretory phenotype (SASP). Although various senotherapeutic strategies targeting senescent cells have been developed for the prevention and treatment of cancers, technology for the in vivo detection and evaluation of senescent cell accumulation has not yet been established. Here, we identified activatable fluorescent probes targeting dipeptidylpeptidase-4 (DPP4) as an effective probe for detecting senescent cells through an enzymatic activity-based screening of fluorescent probes. We also determined that these probes were highly, selectively, and rapidly activated in senescent cells during live cell imaging. Furthermore, we successfully visualized senescent cells in the organs of mice using DPP4-targeted probes. These results are expected to lead to the development of a diagnostic technology for noninvasively detecting senescent cells in vivo and could play a role in the application of DPP4 prodrugs for senotherapy.

2.
Bioorg Med Chem Lett ; 106: 129757, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636718

RESUMEN

9-cyanopyronin is a promising scaffold that exploits resonance Raman enhancement to enable sensitive, highly multiplexed biological imaging. Here, we developed cyano-Hydrol Green (CN-HG) derivatives as resonance Raman scaffolds to expand the color palette of 9-cyanopyronins. CN-HG derivatives exhibit sufficiently long wavelength absorption to produce strong resonance Raman enhancement for near-infrared (NIR) excitation, and their nitrile peaks are shifted to a lower frequency than those of 9-cyanopyronins. The fluorescence of CN-HG derivatives is strongly quenched due to the lack of the 10th atom, unlike pyronin derivatives, and this enabled us to detect spontaneous Raman spectra with high signal-to-noise ratios. CN-HG derivatives are powerful candidates for high performance vibrational imaging.


Asunto(s)
Espectrometría Raman , Estructura Molecular , Vibración , Nitrilos/química , Nitrilos/síntesis química
3.
Front Surg ; 11: 1298709, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516394

RESUMEN

Surgical resection is considered for most brain tumors to obtain tissue diagnosis and to eradicate or debulk the tumor. Glioma, the most common primary malignant brain tumor, generally has a poor prognosis despite the multidisciplinary treatments with radical resection and chemoradiotherapy. Surgical resection of glioma is often complicated by the obscure border between the tumor and the adjacent brain tissues and by the tumor's infiltration into the eloquent brain. 5-aminolevulinic acid is frequently used for tumor visualization, as it exhibits high fluorescence in high-grade glioma. Here, we provide an overview of the fluorescent probes currently used for brain tumors, as well as those under development for other cancers, including HMRG-based probes, 2MeSiR-based probes, and other aminopeptidase probes. We describe our recently developed HMRG-based probes in brain tumors, such as PR-HMRG, combined with the existing diagnosis approach. These probes are remarkably effective for cancer cell recognition. Thus, they can be potentially integrated into surgical treatment for intraoperative detection of cancers.

4.
Nihon Yakurigaku Zasshi ; 159(1): 18-24, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38171832

RESUMEN

Small-molecule based activatable fluorescence probes for detecting specific enzyme activity with high sensitivity can visualize the expression site of marker genes and cancers where the enzyme is highly expressed. However, the enzyme-catalyzed fluorescent hydrolysis product easily leaks out and diffuses from the reaction site, making it difficult to perform long-term tracking and immunohistochemical analysis which needs washing/fixation procedure. Our group have focused on quinone methide chemistry and developed series of activatable fluorescence probes with excellent intracellular retention that are converted to quinone-methide or aza-quinone-methide intermediates upon reaction with enzymes, which are then react with intracellular nucleophiles such as proteins and glutathione to be retained in cells and to exhibit significant increase in fluorescence. Based on this molecular design, we have developed fluorescence probes targeting ß-galactosidase and γ-glutamyltranspeptidase with different colors. We also developed photo-functional probes such as activatable photosensitizers and caged fluorophores. These probes can visualize or kill target enzyme-expressing cells with high selectivity by suppressing the leakage of hydrolysis products from target cells, and fluorescence imaging in combination with immunostaining was possible due to the high tolerance of the obtained fluorescence signal even after washing and fixation.


Asunto(s)
Colorantes Fluorescentes , Neoplasias , Humanos , Colorantes Fluorescentes/química , Neoplasias/metabolismo , Imagen Óptica/métodos , Quinonas
5.
Pancreatology ; 24(1): 169-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061979

RESUMEN

OBJECTIVES: Although the risk of complications due to postoperative pancreatic fistula (POPF) have been evaluated based on the amylase level in drained ascitic fluid, this method has much room for improvement regarding diagnostic accuracy and facility of the measurement. This study aimed to investigate the clinical value of measuring pancreatic chymotrypsin activity for rapid and accurate prediction of POPF after pancreaticoduodenectomy. METHODS: In 52 consecutive patients undergoing pancreaticoduodenectomy, the chymotrypsin activity in pancreatic juice was measured by calculating the increase in fluorescence intensity during the first 5 min after activation with an enzyme-activatable fluorophore. The predictive value for clinically relevant POPF (CR-POPF) was compared between this technique and the conventional method based on the amylase level. RESULTS: According to receiver operating characteristic analyses, pancreatic chymotrypsin activity on postoperative day (POD) 3 measured with a multiplate reader had the highest predictive value for CR-POPF (area under the curve [AUC], 0.752; P < 0.001), yielding 77.8 % sensitivity and 68.8 % specificity. The AUC and sensitivity/specificity of the amylase level in ascitic fluid on POD 3 were 0.695 (P = 0.053) and 77.8 %/41.2 %, respectively. Multivariable analysis identified high pancreatic chymotrypsin activity on POD 3 as an independent risk factor for CR-POPF. Measurement of pancreatic chymotrypsin activity with a prototype portable fluorescence photometer could significantly predict CR-POPF (AUC, 0.731; P = 0.010). CONCLUSION: Measurement of pancreatic chymotrypsin activity enabled accurate and rapid prediction of CR-POPF after pancreaticoduodenectomy. This can help surgeons to implement appropriate drain management at the patient's bedside without delay.


Asunto(s)
Quimotripsina , Fístula Pancreática , Humanos , Fístula Pancreática/diagnóstico , Fístula Pancreática/etiología , Fístula Pancreática/cirugía , Páncreas/cirugía , Pancreaticoduodenectomía/efectos adversos , Factores de Riesgo , Complicaciones Posoperatorias/etiología , Drenaje/métodos , Amilasas , Estudios Retrospectivos
6.
J Am Chem Soc ; 146(1): 521-531, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38110248

RESUMEN

Carboxypeptidases (CPs) are a family of hydrolases that cleave one or more amino acids from the C-terminal of peptides or proteins and play indispensable roles in various physiological and pathological processes. However, only a few highly activatable fluorescence probes for CPs have been reported, and there is a need for a flexibly tunable molecular design platform to afford a range of fluorescence probes for CPs for biological and medical research. Here, we focused on the unique activation mechanism of ProTide-based prodrugs and established a modular design platform for CP-targeting florescence probes based on ProTide chemistry. In this design, probe properties such as fluorescence emission wavelength, reactivity/stability, and target CP can be readily tuned and optimized by changing the four probe modules: the fluorophore, the substituent on the phosphorus atom, the linker amino acid at the P1 position, and the substrate amino acid at the P1' position. In particular, switching the linker amino acid at position P1 enabled us to precisely optimize the reactivity for target CPs. As a proof-of-concept, we constructed probes for carboxypeptidase M (CPM) and prostate-specific membrane antigen (also known as glutamate carboxypeptidase II). The developed probes were applicable for the imaging of CP activities in live cells and in clinical specimens from patients. This design strategy should be useful in studying CP-related biological and pathological phenomena.


Asunto(s)
Carboxipeptidasas , ProTides , Masculino , Humanos , Fluorescencia , Carboxipeptidasas/metabolismo , Hidrolasas , Aminoácidos , Colorantes Fluorescentes/química
7.
Liver Cancer ; 12(6): 590-602, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058421

RESUMEN

Introduction: Complete resection is the only possible treatment for cholangiocarcinoma in the extrahepatic biliary tree (eCCA), although current imaging modalities are limited in their ability to accurately diagnose longitudinal spread. We aimed to develop fluorescence imaging techniques for real-time identification of eCCA using an enzyme-activatable probe, which emits fluorescence immediately after activation by a cancer-specific enzyme. Methods: Using lysates and small tissue fragments collected from surgically resected specimens, we selected the most specific probe for eCCA from among 800 enzyme-activatable probes. The selected probe was directly sprayed onto resected specimens and fluorescence images were acquired; these images were evaluated for diagnostic accuracy. We also comprehensively searched for enzymes that could activate the probe, then compared their expression levels in cancer and non-cancer tissues. Results: Analyses of 19 samples (four cancer lysates, seven non-cancer lysates, and eight bile samples) and 54 tissue fragments (13 cancer tissues and 41 non-cancer tissues) revealed that PM-2MeSiR was the most specific fluorophore for eCCA. Fluorescence images of 7 patients were obtained; these images enabled rapid identification of cancerous regions, which closely matched histopathology findings in 4 patients. Puromycin-sensitive aminopeptidase was identified as the enzyme that might activate the probe, and its expression was upregulated in eCCA. Conclusion: Fluorescence imaging with PM-2MeSiR, which may be activated by puromycin-sensitive aminopeptidase, yielded generally high accuracy. This technique may be useful for real-time identification of the spread of eCCA during surgery and endoscopic examinations.

8.
RSC Med Chem ; 14(12): 2583-2592, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38107175

RESUMEN

Although deuterium incorporation into pharmaceutical drugs is an attractive way to expand drug modalities, their physicochemical properties have not been sufficiently examined. This study focuses on examining the changes in physicochemical properties between flurbiprofen (FP) and flurbiprofen-d8 (FP-d8), which was successfully prepared by direct and multiple H/D exchange reactions at the eight aromatic C-H bonds of FP. Although the effect of deuterium incorporation was not observed between the crystal structures of FP and FP-d8, the melting point and heat of fusion of FP-d8 were lower than those of FP. Additionally, the solubility of FP-d8 increased by 2-fold compared to that of FP. Calculation of the interaction energy between FP/FP-d8 and water molecules using the multi-component density functional theory method resulted in increased solubility of FP-d8. These novel and valuable findings regarding the changes in physicochemical properties triggered by deuterium incorporation can contribute to the further development of deuterated drugs.

9.
Cell Rep ; 42(8): 112880, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37541257

RESUMEN

The proteasome plays a central role in intracellular protein degradation. Age-dependent decline in proteasome activity is associated with cellular senescence and organismal aging; however, the mechanism by which the proteasome plays a role in senescent cells remains elusive. Here, we show that nuclear foci that contain the proteasome and exhibit liquid-like properties are formed in senescent cells. The formation of senescence-associated nuclear proteasome foci (SANPs) is dependent on ubiquitination and RAD23B, similar to previously known nuclear proteasome foci, but also requires proteasome activity. RAD23B knockdown suppresses SANP formation and increases mitochondrial activity, leading to reactive oxygen species production without affecting other senescence traits such as cell-cycle arrest and cell morphology. These findings suggest that SANPs are an important feature of senescent cells and uncover a mechanism by which the proteasome plays a role in senescent cells.


Asunto(s)
Núcleo Celular , Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/metabolismo , Núcleo Celular/metabolismo , Ubiquitinación , Senescencia Celular
10.
Sci Adv ; 9(24): eade9118, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327330

RESUMEN

Super-resolution vibrational microscopy is promising to increase the degree of multiplexing of nanometer-scale biological imaging because of the narrower spectral linewidth of molecular vibration compared to fluorescence. However, current techniques of super-resolution vibrational microscopy suffer from various limitations including the need for cell fixation, high power loading, or complicated detection schemes. Here, we present reversible saturable optical Raman transitions (RESORT) microscopy, which overcomes these limitations by using photoswitchable stimulated Raman scattering (SRS). We first describe a bright photoswitchable Raman probe (DAE620) and validate its signal activation and depletion characteristics when exposed to low-power (microwatt level) continuous-wave laser light. By harnessing the SRS signal depletion of DAE620 through a donut-shaped beam, we demonstrate super-resolution vibrational imaging of mammalian cells with excellent chemical specificity and spatial resolution beyond the optical diffraction limit. Our results indicate RESORT microscopy to be an effective tool with high potential for multiplexed super-resolution imaging of live cells.


Asunto(s)
Microscopía , Vibración , Animales , Microscopía/métodos , Espectrometría Raman/métodos , Mamíferos
11.
EMBO Rep ; 24(6): e55439, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37139607

RESUMEN

Adult autologous human epidermal stem cells can be extensively expanded ex vivo for cell and gene therapy. Identifying the mechanisms involved in stem cell maintenance and defining culture conditions to maintain stemness is critical, because an inadequate environment can result in the rapid conversion of stem cells into progenitors/transient amplifying cells (clonal conversion), with deleterious consequences on the quality of the transplants and their ability to engraft. Here, we demonstrate that cultured human epidermal stem cells respond to a small drop in temperature through thermoTRP channels via mTOR signaling. Exposure of cells to rapamycin or a small drop in temperature induces the nuclear translocation of mTOR with an impact on gene expression. We also demonstrate by single-cell analysis that long-term inhibition of mTORC1 reduces clonal conversion and favors the maintenance of stemness. Taken together, our results demonstrate that human keratinocyte stem cells can adapt to environmental changes (e.g., small variations in temperature) through mTOR signaling and constant inhibition of mTORC1 favors stem cell maintenance, a finding of high importance for regenerative medicine applications.


Asunto(s)
Queratinocitos , Serina-Treonina Quinasas TOR , Adulto , Humanos , Temperatura , Queratinocitos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células Madre/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina
12.
J Am Chem Soc ; 145(16): 8871-8881, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37057960

RESUMEN

Detecting multiple enzyme activities simultaneously with high spatial specificity is a promising strategy to investigate complex biological phenomena, and Raman imaging would be an excellent tool for this purpose due to its high multiplexing capabilities. We previously developed activatable Raman probes based on 9CN-pyronins, but specific visualization of cells with target enzyme activities proved difficult due to leakage of the hydrolysis products from the target cells after activation. Here, focusing on rhodol bearing a nitrile group at the position of 9 (9CN-rhodol), we established a novel mechanism for Raman signal activation based on a combination of aggregate formation (to increase local dye concentration) and the resonant Raman effect along with the bathochromic shift of the absorption, and utilized it to develop Raman probes. We selected the 9CN-rhodol derivative 9CN-JCR as offering a suitable combination of increased stimulated Raman scattering (SRS) signal intensity and high aggregate-forming ability, resulting in good retention in target cells after probe activation. By using isotope-edited 9CN-JCR-based probes, we could simultaneously detect ß-galactosidase, γ-glutamyl transpeptidase, and dipeptidyl peptidase-4 activities in live cultured cells and distinguish cell regions expressing target enzyme activity in Drosophila wing disc and fat body ex vivo.


Asunto(s)
Espectrometría Raman , gamma-Glutamiltransferasa , Animales , Células Cultivadas
13.
Sci Rep ; 13(1): 3757, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882498

RESUMEN

In recent years, thoracoscopic and robotic surgical procedures have increasingly replaced median sternotomy for thymoma and thymic carcinoma. In cases of partial thymectomy, the prognosis is greatly improved by ensuring a sufficient margin from the tumor, and therefore intraoperative fluorescent imaging of the tumor is especially valuable in thoracoscopic and robotic surgery, where tactile information is not available. γ-Glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) has been applied for fluorescence imaging of some types of tumors in the resected tissues, and here we aimed to examine its validity for the imaging of thymoma and thymic carcinoma. 22 patients with thymoma or thymic carcinoma who underwent surgery between February 2013 and January 2021 were included in the study. Ex vivo imaging of specimens was performed, and the sensitivity and specificity of gGlu-HMRG were 77.3% and 100%, respectively. Immunohistochemistry (IHC) staining was performed to confirm expression of gGlu-HMRG's target enzyme, γ-glutamyltranspeptidase (GGT). IHC revealed high GGT expression in thymoma and thymic carcinoma in contrast to absent or low expression in normal thymic parenchyma and fat tissue. These results suggest the utility of gGlu-HMRG as a fluorescence probe for intraoperative visualization of thymomas and thymic carcinomas.


Asunto(s)
Timoma , Neoplasias del Timo , Humanos , Timoma/diagnóstico por imagen , Neoplasias del Timo/diagnóstico por imagen , Neoplasias del Timo/cirugía , gamma-Glutamiltransferasa , Imagen Óptica , Colorantes Fluorescentes
14.
Chem Asian J ; 18(2): e202201086, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36461627

RESUMEN

Photoactivatable fluorescence probes can track the dynamics of specific cells or biomolecules with high spatiotemporal resolution, but their broad absorption and emission peaks limit the number of wavelength windows that can be employed simultaneously. In contrast, the narrower peak width of Raman signals offers more scope for simultaneous discrimination of multiple targets, and therefore a palette of photoactivatable Raman probes would enable more comprehensive investigation of biological phenomena. Herein we report 9-cyano-10-telluriumpyronin (9CN-TeP) derivatives as photoactivatable Raman probes whose stimulated Raman scattering (SRS) intensity is enhanced by photooxidation of the tellurium atom. Modification to increase the stability of the oxidation product led to a julolidine-like derivative, 9CN-diMeJTeP, which is photo-oxidized at the tellurium atom by red light irradiation to afford a sufficiently stable oxidation product with strong electronic pre-resonance, resulting in a bathochromic shift of the absorption spectrum and increased SRS intensity.


Asunto(s)
Luz , Telurio , Colorantes Fluorescentes , Espectrometría Raman/métodos
15.
Anal Chem ; 94(32): 11264-11271, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35913787

RESUMEN

Acidification of intracellular vesicles, such as endosomes and lysosomes, is a key pathway for regulating the function of internal proteins. Most conventional methods of measuring pH are not satisfactory for quantifying the pH inside these vesicles. Here, we investigated the molecular requirements for a fluorescence probe to measure the intravesicular acidic pH in living cells by means of fluorescence lifetime imaging microscopy (FLIM). The developed probe, m-DiMeNAF488, exhibits a pH-dependent equilibrium between highly fluorescent and moderately fluorescent forms, which has distinct and detectable fluorescence lifetimes of 4.36 and 0.58 ns, respectively. The pKa(τ) value of m-DiMeNAF488 was determined to be 4.58, which would be favorable for evaluating the pH in the acidic vesicles. We were able to monitor the pH changes in phagosomes during phagocytosis by means of FLIM using m-DiMeNAF488. This probe is expected to be a useful tool for investigating acidic pH-regulated biological phenomena.


Asunto(s)
Lisosomas , Imagen Óptica , Ácidos/análisis , Endosomas , Colorantes Fluorescentes/química , Humanos , Concentración de Iones de Hidrógeno , Lisosomas/química , Microscopía Fluorescente/métodos
16.
Sci Rep ; 12(1): 9100, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650221

RESUMEN

Rapid identification of lung-cancer micro-lesions is becoming increasingly important to improve the outcome of surgery by accurately defining the tumor/normal tissue margins and detecting tiny tumors, especially for patients with low lung function and early-stage cancer. The purpose of this study is to select and validate the best red fluorescent probe for rapid diagnosis of lung cancer by screening a library of 400 red fluorescent probes based on 2-methyl silicon rhodamine (2MeSiR) as the fluorescent scaffold, as well as to identify the target enzymes that activate the selected probe, and to confirm their expression in cancer cells. The selected probe, glutamine-alanine-2-methyl silicon rhodamine (QA-2MeSiR), showed 96.3% sensitivity and 85.2% specificity for visualization of lung cancer in surgically resected specimens within 10 min. In order to further reduce the background fluorescence while retaining the same side-chain structure, we modified QA-2MeSiR to obtain glutamine-alanine-2-methoxy silicon rhodamine (QA-2OMeSiR). This probe rapidly visualized even borderline lesions. Dipeptidyl peptidase 4 and puromycin-sensitive aminopeptidase were identified as enzymes mediating the cleavage and consequent fluorescence activation of QA-2OMeSiR, and it was confirmed that both enzymes are expressed in lung cancer. QA-2OMeSiR is a promising candidate for clinical application.


Asunto(s)
Colorantes Fluorescentes , Neoplasias Pulmonares , Alanina , Aminopeptidasas , Dipeptidil Peptidasa 4/metabolismo , Colorantes Fluorescentes/química , Glutamina , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Rodaminas/química , Silicio
17.
Chem Sci ; 13(16): 4474-4481, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35656140

RESUMEN

Fluorescent probes that can selectively detect tumour lesions have great potential for fluorescence imaging-guided surgery. Here, we established a library-based approach for efficient screening of probes for tumour-selective imaging based on discovery of biomarker enzymes. We constructed a combinatorial fluorescent probe library for aminopeptidases and proteases, which is composed of 380 probes with various substrate moieties. Using this probe library, we performed lysate-based in vitro screening and/or direct imaging-based ex vivo screening of freshly resected clinical specimens from lung or gastric cancer patients, and found promising probes for tumour-selective visualization. Further, we identified two target enzymes as novel biomarker enzymes for discriminating between tumour and non-tumour tissues. This library-based approach is expected to be an efficient tool to develop tumour-imaging probes and to discover new biomarker enzyme activities for various tumours and other diseases.

18.
J Vet Med Sci ; 84(4): 593-599, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35249908

RESUMEN

Since gamma-glutamyl transpeptidase (GGT) is highly and locally expressed in human breast cancer, a GGT-enzymatically activatable fluorescent probe, gamma-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG), has been developed to detect the human breast cancer area with high performance. In this study, GGT expression and the efficacy of gGlu-HMRG on visualization were investigated in canine mammary gland tumors (MGT). Seventeen non-fixed fresh-frozen MGT specimens and each peritumoral control tissue were utilized. The GGT mRNA levels were highly observed in the tumor specimens compared with the control. GGT immunostaining was mostly observed on the cell membrane and cytosol of the alveolar and duct mammary epithelium of MGT tissues. These signals were strongly positive in several cases while they were mild to not observed in other cases. When gGlu-HMRG solution was dropped to the non-fixed tissue pieces of MGT or control tissues, the fluorescence intensities (FIs) were measured using Maestro in-vivo imaging device. FIs in MGT tissues were significantly higher than each control tissue 20 min after treatment. Based on Youden index method, the maximum sensitivity and specificity of FI was 82.4% and 82.4%. These findings suggest that GGT is highly expressed in several MGTs in dogs and gGlu-HMRG could visualize at least a part of MGT tissues in dogs. Nevertheless, it should be needed to assess the false-negative areas more carefully in canine than human cases.


Asunto(s)
Enfermedades de los Perros , Neoplasias Mamarias Animales , Animales , Enfermedades de los Perros/diagnóstico por imagen , Perros , Femenino , Colorantes Fluorescentes/metabolismo , Neoplasias Mamarias Animales/diagnóstico por imagen , Rodaminas/metabolismo , gamma-Glutamiltransferasa
19.
Bioconjug Chem ; 33(3): 523-529, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35166539

RESUMEN

We previously showed that spraying the fluorescent probe gGlu-HMRG (γ-glutamyl hydroxymethyl rhodamine green) can visualize even tiny tumors on the mesentery and peritoneal wall of tumor-bearing mice. However, during surgery, repeated spraying is necessary to detect tumors located deep within organs. Here, we examine whether deeply located tumors can be stained by intravenous administration of this probe. In mice bearing subcutaneous tumors, intravenous administration of gGlu-HMRG resulted in a rapid and specific increase of fluorescence in the tumor, which was visible to the naked eye within 5 min, and the maximum fluorescence intensity ratio of tumor to normal tissue (T/N = 4.3) was reached at 30 min. In mice bearing lung tumors, the T/N ratio reached approximately 20 at 30 min after administration, and deeply located tumors were clearly visualized. These results suggest that intravenous administration of gGlu-HMRG may be a useful technique in fluorescence-guided surgery of tumors.


Asunto(s)
Colorantes Fluorescentes , Neoplasias , Administración Intravenosa , Animales , Línea Celular Tumoral , Ratones , Neoplasias/patología , Rodaminas , gamma-Glutamiltransferasa
20.
Curr Opin Chem Biol ; 67: 102112, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35065431

RESUMEN

In cancer surgery, complete surgical resection of tumor lesions is critical to optimize the outcome. However, it is sometimes difficult to distinguish the boundary between tumor and normal tissues, and residual tumor tissue can result in cancer recurrence. Intraoperative imaging with fluorescent molecular probes can assist surgeons to visualize tumor lesions and their boundaries during surgery. Here, we review molecular probes for fluorescence image-guided cancer surgery, focusing especially on recent developments in high-performance tumor-imaging probes and the strategies used for their design.


Asunto(s)
Neoplasias , Cirugía Asistida por Computador , Fluorescencia , Colorantes Fluorescentes , Humanos , Sondas Moleculares , Neoplasias/diagnóstico por imagen , Neoplasias/cirugía , Imagen Óptica/métodos , Cirugía Asistida por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA