Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(65): 8545-8548, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39041238

RESUMEN

The fusion protein of an engineered zymogen of microbial transglutaminase (EzMTG) with a protein G variant, EzMTG-pG, enabled the proximity-based, tag-free labeling of Lys65 in the heavy chain of a native IgG antibody (trastuzumab) with a Gln-donor peptidyl substrate functionalized with a fluorescent molecule.


Asunto(s)
Inmunoglobulina G , Lisina , Transglutaminasas , Transglutaminasas/química , Transglutaminasas/metabolismo , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Lisina/química , Humanos , Colorantes Fluorescentes/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
2.
Molecules ; 29(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998948

RESUMEN

Herein, we report a transdermal patch prepared using an ionic liquid-based solid in oil (IL-S/O) nanodispersion and a pressure-sensitive adhesive (PSA) to deliver the macromolecular antigenic protein, ovalbumin (OVA). The IL-S/O nanodispersion and a PSA were first mixed at an equal weight ratio, then coated onto a release liner, and covered with a support film. To evaluate the effect of the PSA, three types of PSAs, DURO-TAK 87-4098, DURO-TAK 87-4287, and DURO-TAK 87-235A, were used to obtain the corresponding IL-S/O patches SP-4098, SP-4287, and SP-235A, respectively. The prepared IL-S/O patches were characterized for surface morphology, viscoelasticity, and moisture content. In vitro skin penetration and in vivo immunization studies of the IL-S/O patches were performed using Yucatan micropig skin and the C57BL/6NJc1 mice model, respectively. The SP-4098 and SP-4287 delivered 5.49-fold and 5.47-fold higher amounts of drug compared with the aqueous formulation. Although both patches delivered a similar amount of drug, SP-4287 was not detached fully from the release liner after 30 days, indicating low stability. Mice immunized with the OVA-containing SP-4098 produced a 10-fold increase in anti-OVA IgG compared with those treated with an aqueous formulation. These findings suggested that the IL-S/O patch may be a good platform for the transdermal delivery of antigen molecules.


Asunto(s)
Administración Cutánea , Antígenos , Inmunización , Líquidos Iónicos , Ovalbúmina , Parche Transdérmico , Líquidos Iónicos/química , Animales , Ratones , Ovalbúmina/inmunología , Ovalbúmina/administración & dosificación , Antígenos/inmunología , Antígenos/administración & dosificación , Antígenos/química , Porcinos , Piel/metabolismo , Piel/inmunología , Sistemas de Liberación de Medicamentos , Ratones Endogámicos C57BL , Femenino , Absorción Cutánea
3.
J Biosci Bioeng ; 138(1): 89-95, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38644063

RESUMEN

Antibody drugs play a vital role in diagnostics and therapy. However, producing antibodies from mammalian cells is challenging owing to cellular heterogeneity, which can be addressed by applying droplet-based microfluidic platforms for high-throughput screening (HTS). Here, we designed an integrated system based on disulfide-bonded redox-responsive hydrogel beads (redox-HBs), which were prepared through enzymatic hydrogelation, to compartmentalize, screen, select, retrieve, and recover selected Chinese hamster ovary (CHO) cells secreting high levels of antibodies. Moreover, redox-HBs were functionalized with protein G as an antibody-binding module to capture antibodies secreted from encapsulated cells. As proof-of-concept, cells co-producing immunoglobulin G (IgG) as the antibody and green fluorescent protein (GFP) as the reporter molecule, denoted as CHO(IgG/GFP), were encapsulated into functionalized redox-HBs. Additionally, antibody-secreting cells were labeled with protein L-conjugated horseradish peroxidase using a tyramide amplification system, enabling fluorescence staining of the antibody captured inside the beads. Redox-HBs were then applied to fluorescence-activated droplet sorting, and selected redox-HBs were degraded by reducing the disulfide bonds to recover the target cells. The results indicated the potential of the developed HTS platform for selecting a single cell viable for biopharmaceutical production.


Asunto(s)
Cricetulus , Ensayos Analíticos de Alto Rendimiento , Hidrogeles , Oxidación-Reducción , Células CHO , Animales , Ensayos Analíticos de Alto Rendimiento/métodos , Hidrogeles/química , Inmunoglobulina G/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Cricetinae , Disulfuros/química , Disulfuros/metabolismo
4.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612381

RESUMEN

Candida albicans is a prevalent fungal pathogen that displays antibiotic resistance. The polyene antifungal amphotericin B (AmB) has been the gold standard because of its broad antifungal spectra, and its liposomal formulation, AmBisome, has been used widely and clinically in treating fungal infections. Herein, we explored enhancing the antifungal activity of AmBisome by integrating a small chitin-binding domain (LysM) of chitinase A derived from Pteris ryukyuensis. LysM conjugated with a lipid (LysM-lipid) was initially prepared through microbial transglutaminase (MTG)-mediated peptide tag-specific conjugation of LysM with a lipid-peptide substrate. The AmBisome formulation modified with LysM-lipid conjugates had a size distribution that was comparable to the native liposomes but an increased zeta potential, indicating that LysM-lipid conjugates were anchored to AmBisome. LysM-lipid-modified AmBisome exhibited long-term stability at 4 °C while retaining the capacity to bind chitin. Nevertheless, the antifungal efficacy of LysM-lipid-modified AmBisome against C. albicans was modest. We then redesigned a new LysM-lipid conjugate by introducing a peptide linker containing a thrombin digestion (TD) site at the C-terminus of LysM (LysM-TD linker-lipid), thereby facilitating the liberation of the LysM domain from AmBisome upon the addition of thrombin. This new AmBisome formulation anchored with LysM-TD linker-lipid exhibited superior performance in suppressing C. albicans growth in the presence of thrombin compared with the LysM-lipid formulation. These results provide a platform to design stimuli-responsive AmBisome formulations that respond to external environments and thus advance the treatment of pathogenic fungi infections.


Asunto(s)
Anfotericina B , Antifúngicos , Péptido Hidrolasas , Antifúngicos/farmacología , Liposomas , Trombina , Candida albicans , Quitina , Péptidos/farmacología , Lípidos
5.
Chem Commun (Camb) ; 60(30): 4036-4039, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38466016

RESUMEN

Herein, we report ethosome (ET) formulations composed of a safe amount of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)-based ionic liquid with various concentrations of ethanol as a carrier for the transdermal delivery of a high molecular weight drug, insulin. The Insulin-loaded ET vesicles exhibited long-term stability compared to conventional DMPC ETs, showing significantly higher drug encapsulation efficiency and increased skin permeation ability.


Asunto(s)
Líquidos Iónicos , Insulina , Dimiristoilfosfatidilcolina , Administración Cutánea , Piel , Preparaciones Farmacéuticas , Liposomas
6.
Bioconjug Chem ; 35(3): 340-350, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38421254

RESUMEN

Microbial transglutaminase (MTG) from Streptomyces mobaraensis is a powerful biocatalytic glue for site-specific cross-linking of a range of biomolecules and synthetic molecules that have an MTG-reactive moiety. The preparation of active recombinant MTG requires post-translational proteolytic digestion of a propeptide that functions as an intramolecular chaperone to assist the correct folding of the MTG zymogen (MTGz) in the biosynthesis. Herein, we report engineered active zymogen of MTG (EzMTG) that is expressed in soluble form in the host Escherichia coli cytosol and exhibits cross-linking activity without limited proteolysis of the propeptide. We found that the saturation mutagenesis of residues K10 or Y12 in the propeptide domain generated several active MTGz mutants. In particular, the K10D/Y12G mutant exhibited catalytic activity comparable to that of mature MTG. However, the expression level was low, possibly because of decreased chaperone activity and/or the promiscuous substrate specificity of MTG, which is potentially harmful to the host cells. The K10R/Y12A mutant exhibited specific substrate-dependent reactivity toward peptidyl substrates. Quantitative analysis of the binding affinity of the mutated propeptides to the active site of MTG suggested an inverse relationship between the binding affinity and the catalytic activity of EzMTG. Our proof-of-concept study provides insights into the design of a new biocatalyst using the MTGz as a scaffold and a potential route to high-throughput screening of EzMTG mutants for bioconjugation applications.


Asunto(s)
Precursores Enzimáticos , Transglutaminasas , Precursores Enzimáticos/genética , Transglutaminasas/metabolismo
7.
ACS Biomater Sci Eng ; 10(1): 628-636, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38048166

RESUMEN

Droplet-based high-throughput screening systems are an emerging technology that provides a quick test to screen millions of cells with distinctive characteristics. Biopharmaceuticals, specifically therapeutic proteins, are produced by culturing cells that secrete heterologous recombinant proteins with different populations and expression levels; therefore, a technology to discriminate cells that produce more target proteins is needed. Here, we present a droplet-based microfluidic strategy for encapsulating, screening, and selecting target cells with redox-responsive hydrogel beads (HBs). As a proof-of-concept study, we demonstrate the enrichment of hybridoma cells with enhanced capability of antibody secretion using horseradish peroxidase (HRP)-catalyzed hydrogelation of tetra-thiolate poly(ethylene glycol); hybridoma cells were encapsulated in disulfide-bonded HBs. Recombinant protein G or protein M with a C-terminal cysteine residue was installed in the HBs via disulfide bonding to capture antibodies secreted from the cells. HBs were fluorescently stained by adding the protein L-HRP conjugate using a tyramide signal amplification system. HBs were then separated by fluorescence-activated droplet sorting and degraded by reducing the disulfide bonds to recover the target cells. Finally, we succeeded in the selection of hybridoma cells with enhanced antibody secretion, indicating the potential of this system in the therapeutic protein production.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Hidrogeles , Animales , Hidrogeles/metabolismo , Hibridomas/metabolismo , Proteínas Recombinantes/metabolismo , Disulfuros/metabolismo , Mamíferos
8.
J Biosci Bioeng ; 136(6): 471-476, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37798227

RESUMEN

Albumin is an attractive component for the development of biomaterials applied as biomedical implants, including drug carriers and tissue engineering scaffolds, because of its high biocompatibility and low immunogenicity. Additionally, albumin-based gelators facilitate cross-linking reactions under mild conditions, which maintains the high viability of encapsulated living cells. In this study, we synthesized albumin derivatives to undergo gelation under physiological conditions via the peroxidase-catalyzed formation of cross-links. Albumin was modified with phenolic hydroxyl groups (Alb-Ph-OH) using carbodiimide chemistry, and the effect of degree of substitution on gelation was investigated. Various properties of the Alb-Ph-OH hydrogels, namely the gelation time, swelling ratio, pore size, storage modulus, and enzymatic degradability, were easily controlled by adjusting the degree of substitution and the polymer concentration. Moreover, the viability of cells encapsulated within the Alb-Ph-OH hydrogel was high. These results demonstrate the potential applicability of Alb-Ph-OH hydrogels as cell-encapsulating materials for biomedical applications, including tissue engineering.


Asunto(s)
Encapsulación Celular , Hidrogeles , Hidrogeles/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Albúminas
9.
ACS Appl Mater Interfaces ; 15(28): 33299-33308, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37405761

RESUMEN

Nucleic acid drugs, including antisense oligonucleotides (ASOs), have received considerable attention as novel therapeutics for the treatment of intractable diseases. Despite their potential benefits, ASOs are currently administered via injection, which can negatively impact patient quality of life because of the prevalence of severe injection site reactions. Non-invasive transdermal administration of ASOs is desirable but highly challenging owing to the strong barrier imposed by the stratum corneum, which only permits the penetration of small molecules under 500 Da. For ASOs to exert their antisense effect, they must traverse the negatively charged cell membrane and reach the cytoplasm. In this study, we used the solid-in-oil (S/O) dispersion technology to facilitate the skin permeation of ASOs by coating the drug with a hydrophobic surfactant molecule, specifically lipid-based ionic liquid (IL) surfactants with high biocompatibility and transdermal penetration-enhancing properties. To induce the antisense effect, it was important to achieve simultaneous transdermal delivery and intracellular entrapment of ASOs. In vitro investigations indicated that the newly prepared IL-S/O enhanced the transdermal penetration and intracellular delivery of ASOs, thus inhibiting mRNA translation of the target TGF-ß. In addition, in vivo investigations of tumor-bearing mice suggested that the anti-tumor effect of the IL-S/O was similar to that of injection. This study demonstrates the potential of non-invasive transdermal delivery carriers based on biocompatible ILs, which can be applied to a variety of nucleic acid drugs.


Asunto(s)
Líquidos Iónicos , Oligonucleótidos Antisentido , Ratones , Animales , Administración Cutánea , Oligonucleótidos Antisentido/química , Líquidos Iónicos/química , Calidad de Vida , Piel , Preparaciones Farmacéuticas/metabolismo
10.
J Biosci Bioeng ; 135(6): 440-446, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37088672

RESUMEN

Recently, functional nanowire production using amyloids as a scaffold for protein immobilization has attracted attention. However, protein immobilization on amyloid fibrils often caused protein inactivation. In this study, we investigated protein immobilization using enzymatic peptide ligation to suppress protein inactivation during immobilization. We attempted to immobilize functional molecules such as green fluorescent protein (GFP) and Nanoluc to a transthyretin (TTR) amyloid using microbial transglutaminase (MTG), which links the glutamine side chain to the primary amine. Linkage between amyloid fibrils and functional molecules was achieved through the MTG substrate sequence, and the functional molecules-loaded nanowires were successfully fabricated. We also found that the synthetic process from amyloidization to functional molecules immobilization could be achieved in a single-step procedure.All rights reserved.


Asunto(s)
Nanoestructuras , Transglutaminasas , Transglutaminasas/química , Transglutaminasas/metabolismo , Amiloide/química , Amiloide/metabolismo , Péptidos , Proteínas Fluorescentes Verdes/metabolismo
11.
Org Biomol Chem ; 21(2): 306-314, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36342388

RESUMEN

Cytoplasm contains high concentrations of biomacromolecules. Protein behavior under such crowded conditions is reportedly different from that in an aqueous buffer solution, mainly owing to the effect of volume exclusion caused by the presence of macromolecules. Using a crosslinking reaction catalyzed by microbial transglutaminase (MTG) as a model, we herein systematically determined how the substrate size affects enzymatic activity in both dilute and crowded solutions of dextran. We first observed a threefold reduction in MTG-mediated crosslinking of a pair of small peptide substrates in 15 wt% dextran solution. In contrast, when proteinaceous substrates were involved, the crosslinking rates in 15 wt% dextran solutions accelerated markedly to levels comparable with the level in the absence of dextran. Our results provide new insights into the action of enzymes with regard to macromolecular substrates under crowded conditions, of which the potential utility was demonstrated by the formation of highly crosslinked protein polymers.


Asunto(s)
Aceleración , Dextranos , Dextranos/química , Sustancias Macromoleculares
12.
Chem Commun (Camb) ; 59(4): 414-417, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36484713

RESUMEN

This study investigated the localization of artificial peptide supramolecular fibers in liquid-liquid phase separation (LLPS). Hierarchical organization led to the localization of supramolecules in LLPS droplets. Moreover, proteins were recruited into confined droplets by the physical adsorption of proteins on the supramolecules, enabling an enhanced cascade reaction.


Asunto(s)
Proteínas , Proteínas/química
13.
J Pharm Sci ; 112(2): 411-415, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36334812

RESUMEN

Malaria is a mosquito-borne infectious disease that is widespread in developing countries. Malaria vaccines are important in efforts to eradicate malaria; however, vaccines are usually administered by injection, which requires medical personnel and has a risk of causing infection. Transdermal vaccines can be administered without damaging the skin and thus are ideal for the prevention of malaria. However, the stratum corneum forms a "brick and mortar" like structure in which stratum corneum cells are embedded in a hydrophobic matrix composed of lipids, which strongly inhibits the permeation of hydrophilic substances. In the present study, we designed a transdermal vaccine against vivax malaria using a solid-in-oil (S/O) dispersion. The S/O dispersion of a transmission blocking vaccine candidate, Pvs25 from Plasmodium vivax, showed higher skin penetration than that of the aqueous solution. Mice immunized with the S/O dispersion generated antibodies at similar titers as the mice immunized by injection, over the mid- to long-term. These results provide information for the development of transdermally administered malaria vaccines toward the eradication of malaria.


Asunto(s)
Vacunas contra la Malaria , Malaria , Animales , Ratones , Antígenos de Protozoos , Vacunas Sintéticas , Anticuerpos Antiprotozoarios , Malaria/prevención & control
14.
Mol Pharm ; 19(11): 3906-3914, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36066555

RESUMEN

Fungal infections affect more than one billion people worldwide and cause more than one million deaths per year. Amphotericin B (AmB), a polyene antifungal drug, has been used as the gold standard for many years because of its broad antifungal spectrum, high activity, and low tendency of drug resistance. However, the side effects of AmB, such as nephrotoxicity and hepatotoxicity, have hampered its widespread use, leading to the development of a liposome-type AmB formulation, AmBisome. Herein, we report a simple but highly effective strategy to enhance the antifungal activity of AmBisome with a lipid-modified protein. The chitin-binding domain (LysM) of the antifungal chitinase, Pteris ryukyuensis chitinase A (PrChiA), a small 5.3 kDa protein that binds to fungal cell wall chitin, was engineered to have a glutamine-containing peptide tag at the C-terminus for the microbial transglutaminase (MTG)-catalyzed crosslinking reaction (LysM-Q). LysM-Q was site-specifically modified with a lysine-containing lipid peptide substrate of MTG with a palmitoyl moiety (Pal-K). The resulting palmitoylated LysM (LysM-Pal) exhibited negligible cytotoxicity to mammalian cells and can be easily anchored to yield LysM-presenting AmBisome (LysM-AmBisome). LysM-AmBisome exhibited a dramatic enhancement of antifungal activity toward Trichoderma viride and Cryptococcus neoformans, demonstrating the marked impact of displaying a cell-wall binder protein on the targeting ability of antifungal liposomal formulations. Our simple strategy with enzymatic protein lipidation provides a potent approach to upgrade other types of lipid-based drug formulations.


Asunto(s)
Anfotericina B , Quitinasas , Animales , Humanos , Anfotericina B/farmacología , Anfotericina B/química , Antifúngicos/química , Quitina , Liposomas , Lípidos , Mamíferos/metabolismo
15.
Langmuir ; 38(31): 9640-9648, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35882009

RESUMEN

Protein palmitoylation, a post-translational modification, is universally observed in eukaryotic cells. The localization of palmitoylated proteins to highly dynamic, sphingolipid- and cholesterol-rich microdomains (called lipid rafts) on the plasma membrane has been shown to play an important role in signal transduction in cells. However, this complex biological system is not yet completely understood. Here, we used a combined approach where an artificial lipidated protein was applied to biomimetic model membranes and plasma membranes in cells to illuminate chemical and physiological properties of the rafts. Using cell-sized giant unilamellar vesicles, we demonstrated the selective partitioning of enhanced green fluorescent protein modified with a C-terminal palmitoyl moiety (EGFP-Pal) into the liquid-ordered phase consisting of saturated phospholipids and cholesterol. Using Jurkat T cells treated with an immunostimulant (concanavalin A), we observed the vesicular transport of EGFP-Pal. Further cellular studies with the treatment of methyl ß-cyclodextrin revealed the cholesterol-dependent internalization of EGFP-Pal, which can be explained by a raft-dependent, caveolae-mediated endocytic pathway. The present synthetic approach using artificial and natural membrane systems can be further extended to explore the potential utility of artificially lipidated proteins at biological and artificial interfaces.


Asunto(s)
Lipoilación , Microdominios de Membrana , Membrana Celular/química , Colesterol/química , Microdominios de Membrana/química , Liposomas Unilamelares/química
16.
J Biosci Bioeng ; 134(3): 259-263, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35781189

RESUMEN

Amphotericin B (AMB) is a gold standard antifungal drug because of its broad-spectrum activity toward pathogenic yeasts and molds. Because of its low solubility in water and toxicity toward humans, several lipid-based formulations that either increase the aqueous solubility or decrease the side effects have been employed in practical use. In our previous research, we found that the combination of AMB with an artificial palmitoylated chitin-binding domain from Pteris ryukyuensis chitinase (LysM-Pal) resulted in synergistic antifungal action against Trichoderma viride. Herein, we prepared hybrid liposomal formulations by combining a commercially available AMB formulation and liposomes with different surface charges to explore key factors in the antifungal activity. The characterization of AMB-loaded liposomal formulations (AMB-LFs), including particle size distribution and zeta potential, showed that anionic and neutral AMB-LFs could stably encapsulate AMB. The combination of either anionic or neutral AMB-LFs with unmodified LysM decreased the minimum inhibitory concentration of AMB. The combination of neutral AMB-LF with LysM-Pal resulted in a further decrease in the MIC, up to 15-fold compared with that of the neutral AMB-LF alone. Our results demonstrate the potential utility of lipid-based liposomal formulations of AMB combined with lipid-modified proteinaceous binders to tackle fungal infections.


Asunto(s)
Anfotericina B , Antifúngicos , Anfotericina B/efectos adversos , Antifúngicos/química , Antifúngicos/farmacología , Proteínas Portadoras , Quitina , Humanos , Lípidos/química , Liposomas
17.
ACS Infect Dis ; 8(5): 1051-1061, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35471825

RESUMEN

Combinations of antifungal drugs can have synergistic antifungal activity, achieving high therapeutic efficacy while minimizing the side effects. Amphotericin B (AMB) has been used as a standard antifungal drug for fungal infections; however, because of its high toxicity, new strategies to minimize the required dose are desirable. Chitinases have recently received attention as alternative safe antifungal agents. Herein, we report the combination of palmitoylated chitinase domains with AMB to enhance the antifungal activity. The chitin-binding domain (LysM) from Pteris ryukyuensis chitinase was site-specifically palmitoylated by conjugation reaction catalyzed by microbial transglutaminase. The palmitoylated LysM (LysM-Pal) exhibited strong antifungal activity against Trichoderma viride, inhibiting the growth completely at a concentration of 2 µM. This antifungal effect of LysM-Pal was mainly due to the effect of anchoring of palmitic acid motif to the plasma membrane of fungi. A combination of AMB with LysM-Pal resulted in synergistic enhancement of the antifungal activity. Intriguingly, LysM-Pal exhibited higher level of antifungal activity enhancement than palmitoylated catalytic domain (CatD) and fusion of LysM and CatD. Addition of 0.5 µM LysM-Pal to AMB reduced the minimal inhibition concentration of AMB to 0.31 µM (2.5 µM without LysM-Pal). The possible mechanism of the synergistic effect of AMB and LysM-Pal is destabilization of the plasma membrane by anchoring of palmitic acid and ergosterol extraction by AMB and destabilization of the chitin layer by LysM binding. The combination of LysM-Pal with AMB can drastically reduce the dose of AMB and may be a useful strategy to treat fungal infections.


Asunto(s)
Quitinasas , Micosis , Anfotericina B/farmacología , Antifúngicos/química , Quitina , Quitinasas/química , Quitinasas/metabolismo , Humanos , Lipoilación , Micosis/tratamiento farmacológico , Ácido Palmítico
18.
ACS Appl Bio Mater ; 5(6): 2586-2597, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35472266

RESUMEN

Transdermal drug delivery systems (TDDSs) may be useful for preventing various diseases including cancer. However, the stratum corneum (SC) inhibits the permeation of foreign particles into the skin. To obtain an effective TDDS, we developed a protein-containing nanocarrier (PCNC) comprising an antigenic protein (ovalbumin/OVA) stabilized by a combination of surfactants, i.e., a lipid-based surface-active ionic liquid and Tween-80. The PCNC was lyophilized to remove water and cyclohexane and then dispersed in isopropyl myristate. It is biocompatible both in vitro and in vivo, and is suitable for use in a therapeutic TDDS. The skin permeability of the PCNC was significantly (p < 0.0001) enhanced, and the transdermal distribution and transdermal flux of the OVA delivery system were 25 and 28 times greater, respectively, than those of its aqueous formulation. The PCNC disrupted the order of lipid orientation in the skin's SC and increased intercellular protein delivery. It demonstrated effective antitumor activity, drastically (p < 0.001) suppressed tumor growth, increased mouse survival rates, and significantly (p < 0.001) stimulated the OVA-specific tumor immune response. The PCNC also increased the number of cytotoxic T cells expressing CD8 antibodies on their surfaces (CD8 + T-cells) in the tumor microenvironment. These findings suggest that PCNCs may be promising biocompatible carriers for transdermal antigenic protein delivery in tumor immunotherapy.


Asunto(s)
Líquidos Iónicos , Administración Cutánea , Animales , Inmunoterapia , Líquidos Iónicos/metabolismo , Ratones , Proteínas/metabolismo , Piel , Absorción Cutánea , Agua/metabolismo
19.
J Biosci Bioeng ; 133(3): 195-207, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34998688

RESUMEN

Biointerfaces are regions where biomolecules, cells, and organic materials are exposed to environmental media or come in contact with other biomaterials, cells, and inorganic/organic materials. In this review article, six research topics on biointerfaces are described to show examples of state-of-art research approaches. First, biointerface design of nanoparticles for molecular detection is described. Functionalized gold nanoparticles can be used for sensitive detection of various target molecules, including chemical compounds and biomolecules, such as DNA, proteins, cells, and viruses. Second, the interaction between bacterial cell surfaces and material surfaces, including the introduction of advances in analytical methods and theoretical calculations, are explained as well as their applications to bioprocesses. Third, bioconjugation technologies for localizing functional proteins at biointerfaces are introduced, in particular, by focusing the potential of enzymes as a catalytic tool for designing different types of bioconjugates that function at biointerfaces. Forth topics is focusing on lipid-protein interaction in cell membranes as natural biointerfaces. Examples of membrane lipid engineering are introduced, and it is mentioned how their compositional profiles affect membrane protein functions. Fifth topic is the physical method for molecular delivery across the biointerface being developed currently, such as highly efficient nanoinjection, electroporation, and nanoneedle devices, in which the key is how to perforate the cell membrane. Final topic is the chemical design of lipid- or polymer-based RNA delivery carriers and their behavior on the cell interface, which are currently attracting attention as RNA vaccine technologies targeting COVID-19. Finally, future directions of biointerface studies are presented.


Asunto(s)
COVID-19 , Nanopartículas del Metal , COVID-19/prevención & control , Membrana Celular , Oro , Humanos , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
20.
Biomaterials ; 282: 121385, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35093824

RESUMEN

The biomaterial-based immunoengineering has become one of the most attractive research fields in the last decade. In the present study, a solid-in-oil-in-water (S/O/W) emulsion encapsulating antigen in the oil phase of an oil-in-water (O/W) emulsion was prepared as a novel vaccine carrier consisting of similar materials to the emulsion adjuvant of which the safety, immunogenicity and vaccination efficacy have been already confirmed in human. Direct observation by high-resolution confocal laser scanning microscopy and small angle X-ray scattering analysis showed that the antigens were dispersed inside of the oil phase of the S/O/W emulsion as solid-state particles. The S/O/W emulsion robustly produced antigen-specific antibodies and enhanced the antitumor effects in a therapeutic cancer vaccination compared with free antigens or the O/W emulsion in vivo. This result is in good agreement with the activation effect of antigen-specific cytotoxic T lymphocytes and antigen presentation by the S/O/W emulsion, indicating that the S/O/W emulsion consisting of already approved materials is a promising vaccine carrier to produce both humoral and cellular immunity.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra el Cáncer , Antígenos , Emulsiones , Humanos , Vacunación , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...