Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664566

RESUMEN

How chromatin enzymes work in condensed chromatin and how they maintain diffusional mobility inside remains unexplored. Here we investigated these challenges using the Drosophila ISWI remodeling ATPase, which slides nucleosomes along DNA. Folding of chromatin fibers did not affect sliding in vitro. Catalytic rates were also comparable in- and outside of chromatin condensates. ISWI cross-links and thereby stiffens condensates, except when ATP hydrolysis is possible. Active hydrolysis is also required for ISWI's mobility in condensates. Energy from ATP hydrolysis therefore fuels ISWI's diffusion through chromatin and prevents ISWI from cross-linking chromatin. Molecular dynamics simulations of a 'monkey-bar' model in which ISWI grabs onto neighboring nucleosomes, then withdraws from one before rebinding another in an ATP hydrolysis-dependent manner, qualitatively agree with our data. We speculate that monkey-bar mechanisms could be shared with other chromatin factors and that changes in chromatin dynamics caused by mutations in remodelers could contribute to pathologies.

2.
bioRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38106060

RESUMEN

How chromatin enzymes work in condensed chromatin and how they maintain diffusional mobility inside remains unexplored. We investigated these challenges using the Drosophila ISWI remodeling ATPase, which slides nucleosomes along DNA. Folding of chromatin fibers did not affect sliding in vitro. Catalytic rates were also comparable in- and outside of chromatin condensates. ISWI cross-links and thereby stiffens condensates, except when ATP hydrolysis is possible. Active hydrolysis is also required for ISWI's mobility in condensates. Energy from ATP hydrolysis therefore fuels ISWI's diffusion through chromatin and prevents ISWI from cross-linking chromatin. Molecular dynamics simulations of a 'monkey-bar' model in which ISWI grabs onto neighboring nucleosomes, then withdraws from one before rebinding another in an ATP hydrolysis-dependent manner qualitatively agree with our data. We speculate that 'monkey-bar' mechanisms could be shared with other chromatin factors and that changes in chromatin dynamics caused by mutations in remodelers could contribute to pathologies.

3.
J Chem Phys ; 155(17): 175101, 2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34742205

RESUMEN

Single-molecule force spectroscopy using optical tweezers continues to provide detailed insights into the behavior of nanoscale systems. Obtaining precise measurements of their mechanical properties is highly dependent on accurate instrument calibration. Therefore, instrumental drift or inaccurate calibration may prevent reaching an accuracy at the theoretical limit and may lead to incorrect conclusions. Commonly encountered sources of error include inaccuracies in the detector sensitivity and trap stiffness and neglecting the non-harmonicity of an optical trap at higher forces. Here, we first quantify the impact of these artifacts on force-extension data and find that a small deviation of the calibration parameters can already have a significant downstream effect. We then develop a method to identify and remove said artifacts based on differences in the theoretical and measured noise of bead fluctuations. By applying our procedure to both simulated and experimental data, we can show how effects due to miscalibration and trap non-linearities can be successfully removed. Most importantly, this correction can be performed post-measurement and could be adapted for data acquired using any force spectroscopy technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...