Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Photodiagnosis Photodyn Ther ; 26: 252-257, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30951867

RESUMEN

OBJECTIVES: Photodynamic therapy with a bactericidal action is called antimicrobial photodynamic therapy (aPDT),which is a method of staining an object with a photosensitizing dye and then sterilizing by irradiating the dye at it's excitation wavelength. In this study, we aimed to investigate a caries pathogenic bactericidal method in a site difficult to mechanically remove, by examining aPDT effect on Streptococcus mutans (S. mutans), which is a typical caries pathogenic bacteria by applying the plaque disclosing solution as photosensitizing dye. METHODS: The absorption wavelength spectrum of irradiating plaque staining agent phloxine B (PB) was analyzed using UV-vis. Reactive oxygen species (ROS) generated by photo excitation with blue LED irradiation was measured by electron spin resonance technique. S. mutans was cultured according to a conventional method and the effect of aPDT after PB staining was evaluated by a Colony Forming Unit (CFU). In addition, protein carbonyl (PC), an oxidative stress marker, was also measured by western blotting. RESULTS: Singlet oxygen was generated by PB with blue light. As a result of aPDT treatment on S. mutans under this condition, it was recognized that CFU was suppressed dependent on irradiation intensity of blue light. In addition, the expression of PC was enhanced by aPDT. CONCLUSIONS: aPDT is demonstrated by staining S. mutans with PB and irradiating blue light used for resin polymerization and tooth bleaching to generate ROS. Therefore, plaque-disclosing solution-based aPDT against S. mutans might represent a new method for cleaning pit and fissure grooves.


Asunto(s)
Eosina I Azulada/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Streptococcus mutans/efectos de los fármacos , Caries Dental/microbiología , Espectroscopía de Resonancia por Spin del Electrón , Carbonilación Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Oxígeno Singlete/metabolismo , Células Madre
2.
J Periodontol ; 90(8): 903-910, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30690740

RESUMEN

BACKGROUND: Porphyromonas gingivalis is a major pathogen and has a high detection rate in periodontal disease. Fimbriae and hemagglutinin are expressed by P. gingivalis, and these play an important role in the adherence of the bacteria to periodontal tissue and biofilm formation. The aim of this study was to investigate the effects of sub-minimal inhibitory concentrations (sub-MICs) of azithromycin on the adherence of P. gingivalis, focusing on the inhibition of fimbriae expression and hemagglutinin activity. METHODS: P. gingivalis ATCC 33277 were incubated anaerobically with sub-MICs of azithromycin at 37°C by gentle shaking for 18 hours. The bacterial cells were harvested, washed twice with phosphate-buffered saline (PBS), and the proteins analyzed by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. Adherence assay and hemagglutinin activity tests were done with the same culture. RESULTS: The results of SDS-PAGE indicated that the sub-MICs of azithromycin inhibited 41-kDa fimbrial protein expression and hemagglutinin activities. The disappearance of 41-kDa fimbrial protein expression and long fimbriae in 0.4 µg/mL, 0.2 µg/mL, and 0.1 µg/mL of azithromycin was confirmed by western blotting and transmission electron microscopy. The adherence of P. gingivalis to human gingival epithelial cells was reduced by sub-MICs of azithromycin compared with the adherence levels without antibiotic. CONCLUSIONS: These results suggest that sub-MICs of azithromycin may reduce the adherence of P. gingivalis to host cells, by inhibiting production of fimbriae and hemagglutinin activities. Therefore, azithromycin can be used as a biofilm treatment of periodontal disease caused by P. gingivalis.


Asunto(s)
Azitromicina , Porphyromonas gingivalis , Adhesión Bacteriana , Proteínas Bacterianas , Proteínas Fimbrias , Fimbrias Bacterianas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...