Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 184: 383-396, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936753

RESUMEN

Triple-negative breast cancer (TNBC) is a relatively "cold" tumour with low immunogenicity compared to other tumour types. Especially, the immune checkpoint inhibitors to treat metastatic TNBC only shows the modest immune response rates. Here, we used Chlorella vulgaris as a bioreactor to synthesize an efficient nanobomb (Bio-MnSe) aimed at eliciting systemic anti-tumour immune response. Despite possessing extremely low Mn content, Bio-MnSe effectively produced more ROS and activated stronger cGAS-STING signal pathway compared to pure Se nanoparticles and free Mn2+ ions, promoting the infiltration of natural killer (NK) cells, cytotoxic T lymphocytes (CTLs) in tumour, effectively turning "cold" tumour into "hot" tumour, and achieving strong antitumour immunotherapy. Additionally, the use of αPD-L1 as an immune checkpoint antagonist further increased the anti-tumour immune response of Bio-MnSe, resulting in enhanced anti-tumour effects. Doxorubicin (Dox), an immunogenic cell death (ICD) inducer, was combined with Bio-MnSe to form Bio-MnSe@Dox. This Bio-MnSe@Dox not only directly damaged tumour cells and induced tumour ICD but also promoted dendritic cell maturation, cytotoxic T lymphocyte infiltration, and NK cell recruitment, synergistically intensifying anti-tumour immune responses and suppressing tumour relapse and lung metastasis. Collectively, our findings propose an effective strategy for transforming 'cold' tumours to 'hot' ones, thereby advancing the development of anti-tumour immune drugs. STATEMENT OF SIGNIFICANCE: A biogenic MnSe (Bio-MnSe) nanocomposite was synthesized using Chlorella vulgaris as a bioreactor for enhanced immunotherapy of TNBC. Bio-MnSe demonstrated a stronger ability to activate the cGAS-STING signalling pathway and generate more ROS compared to pure Se nanoparticles and free Mn2+ ions. Apoptotic cells induced by Bio-MnSe released a significant amount of interferon, leading to the activation of T and natural killer (NK) cells, ultimately transforming immunologically 'cold' breast tumours to 'hot' tumours and enhancing the tumour's response to immune checkpoint inhibitors. The combination of Bio-MnSe with Dox or αPD-L1 further enhanced the anti-tumour immune response, fostering dendritic cell maturation, infiltration of cytotoxic T lymphocytes, and recruitment of NK cells, thereby enhancing the anti-tumour immunotherapy of TNBC.


Asunto(s)
Muerte Celular Inmunogénica , Manganeso , Proteínas de la Membrana , Nucleotidiltransferasas , Transducción de Señal , Animales , Femenino , Muerte Celular Inmunogénica/efectos de los fármacos , Ratones , Humanos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Manganeso/química , Manganeso/farmacología , Doxorrubicina/farmacología , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Selenio/química , Selenio/farmacología , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Antígeno B7-H1/metabolismo , Ratones Endogámicos BALB C , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/efectos de los fármacos
2.
Photosynth Res ; 159(2-3): 153-164, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37204684

RESUMEN

Different light spectra from light-emitting diodes (LEDs) trigger species-specific adaptive responses in plants. We exposed Artemisia argyi (A. argyi) to four LED spectra: white (the control group), monochromatic red light (R), monochromatic blue light (B), or a mixture of R and B light of photon flux density ratio is 3 (RB), with equivalent photoperiod (14 h) and light intensity (160 µmol s-1 m-2). R light accelerated photomorphogenesis but decreased biomass, while B light significantly increased leaf area and short-term exposure (7 days) to B light increased total phenols and flavonoids. HPLC identified chlorogenic acid, 3,5-dicaffeoylquinic acid, gallic acid, jaceosidin, eupatilin, and taxol compounds, with RB and R light significantly accumulating chlorogenic acid, 3,5-dicaffeoylquinic acid, and gallic acid, and B light promoting jaceosidin, eupatilin, and taxol. OJIP measurements showed that B light had the least effect on the effective quantum yield ΦPSII, with higher rETR(II), Fv/Fm, qL and PIabs, followed by RB light. R light led to faster photomorphology but lower biomass than RB and B lights and produced the most inadaptability, as shown by reduced ΦPSII and enlarged ΦNPQ and ΦNO. Overall, short-term B light promoted secondary metabolite production while maintaining effective quantum yield and less energy dissipation.


Asunto(s)
Artemisia , Ácido Clorogénico/análogos & derivados , Artemisia/metabolismo , Fluorescencia , Ácido Gálico , Clorofila/metabolismo , Paclitaxel
3.
Heliyon ; 8(8): e10021, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35942280

RESUMEN

Silver nanoparticles (AgNPs) synthesized from plant extracts have recently emerged as a rapidly growing field with numerous applications in pharmaceutical and clinical contexts. The purpose of this research is to come up with a novel method for the biosynthesis of silver nanoparticles that use Eucommia ulmoides leaf extract as a reducing agent. The synthesis of AgNPs was confirmed using UV-vis spectroscopy, and the properties of AgNPs were characterized using Transmission Electron Microscope, Fourier Infrared Spectrometer, X-ray diffraction, Thermogravimetric Analysis, and Zeta potential. The results showed that the AgNPs exhibited a characteristic absorption peak at 430 nm, their diameter ranged from 4 nm to 52 nm, and C, O, and Cl elements, which might represent flavonoids and phenolic components absorbed on the surface of AgNPs. The zeta potential of AgNPs was found to be -30.5 mV, which indicates repulsion among AgNPs and they have good dispersion stability. AgNPs have been found to suppress the tyrosinase activity both in mushroom tyrosinase and A375 cells, as well as diminish ROS formation in HaCat cells. According to this study, AgNPs is a novel material that can enhance skin health by preventing melanin development.

4.
PeerJ ; 10: e13078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282284

RESUMEN

Hydrogen sulphide (H2S), a crucial gas signal molecule, has been reported to be involved in various processes related to development and adversity responses in plants. However, the effects and regulatory mechanism of H2S in controlling Fusarium head blight (FHB) in wheat have not been clarified. In this study, we first reported that H2S released by low concentrations of sodium hydrosulphide (NaHS) could significantly alleviate the FHB symptoms caused by Fusarium graminearum (F. graminearum) in wheat. We also used coleoptile inoculation to investigate the related physiological and molecular mechanism. The results revealed that FHB resistance was strongly enhanced by the H2S released by NaHS, and 0.3 mM was confirmed as the optimal concentration. H2S treatment dramatically reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) while enhancing the activities of antioxidant enzymes. Meanwhile, the relative expressions levels of defence-related genes, including PR1.1, PR2, PR3, and PR4, were all dramatically upregulated. Our results also showed that H2S was toxic to F. graminearum by inhibiting mycelial growth and spore germination. Taken together, the findings demonstrated the potential value of H2S in mitigating the adverse effects induced by F. graminearum and advanced the current knowledge regarding the molecular mechanisms in wheat.


Asunto(s)
Fusarium , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/farmacología , Triticum/genética , Plantones , Peróxido de Hidrógeno/farmacología
5.
Plant Physiol Biochem ; 167: 921-933, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34555666

RESUMEN

Karrikinolide (KAR1), identified in biochars, has gained research attention because of its significant role in seed germination, seedling development, root development, and abiotic stresses. However, KAR1 regulation of salt stress in wheat is elusive. This study investigated the physiological mechanism involved in KAR1 alleviation of salt stress in wheat. The results showed KAR1 boosted seed germination percentage under salinity stress via stimulating the relative expression of genes regulating gibberellins biosynthesis and decreasing the expression levels of abscisic acid biosynthesis and signaling genes. As seen in seed germination, exogenous supplementation of KAR1 dramatically mitigated the salt stress also in wheat seedling, resulting in increased root and shoot growth as measured in biomass as compared to salt stress alone. Salt stress significantly induced the endogenous hydrogen peroxide and malondialdehyde levels, whereas KAR1 strictly counterbalanced them. Under salt stress, KAR1 supplementation showed significant induction in reduced glutathione (GSH) and reduction in oxidized glutathione (GSSG) content, which improved GSH/GSSG ratio in wheat seedlings. Exogenous supplementation of KAR1 significantly promoted the activities of enzymatic antioxidants in wheat seedlings exposed to salt stress. KAR1 induced the relative expression of genes regulating the biosynthesis of antioxidants in wheat seedlings under salinity. Moreover, KAR1 induced the expression level of K+/Na+ homeostasis genes, reduced Na+ concentration, and induced K+ concentration in wheat seedling under salt stress. The results suggest that KAR1 supplementation maintained the redox and K+/Na+ homeostasis in wheat seedling under salinity, which might be a crucial part of physiological mechanisms in KAR1 induced tolerance to salt stress. In conclusion, we exposed the protective role of KAR1 against salt stress in wheat.


Asunto(s)
Germinación , Triticum , Antioxidantes , Furanos , Homeostasis , Oxidación-Reducción , Piranos , Estrés Salino , Plantones , Estrés Fisiológico , Triticum/genética
6.
Front Microbiol ; 12: 724103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447365

RESUMEN

Aflatoxin B1 (AFB1) is the most harmful mycotoxin produced by filamentous fungi and presents a serious threat to human and animal health. Therefore, it is essential to protect humans and animals from AFB1-induced acute and chronic toxicity. In this study, Pseudomonas strain m29 having a high efficiency of AFB1 transformation was isolated from soil. The transformation ratio by m29 was more than 97% within 24 h, and the optimum temperature for transformation was 37°C. Moreover, the AFB1 transforming activity was mainly attributed to the cell-free supernatant of strain m29. The metabolite that plays a crucial role in AFB1 transformation is likely 1,2-dimethylhydrazine or 1,1-dimethylhydrazine, as identified by GC-MS and LC-MS analysis. AFB1 was transformed into a product with molecular formula C17H14O7. To the best of our knowledge, this is the first study of non-enzymatic AFB1 transformation by bacteria. Importantly, this AFB1 transformation mechanism could be universal to various microorganisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...