Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; : e2407525, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268778

RESUMEN

Covalent organic frameworks (COFs) are viewed as promising organic electrode materials for metal-ion batteries due to their structural diversity and tailoring capabilities. In this work, firstly using the monomers N,N,N',N'-tetrakis(4-aminophenyl)-1,4-phenylenediamine (TPDA) and terephthaldehyde (TA), p-type phenylenediamine-based imine-linked TPDA-TA-COF is synthesized. To construct a bipolar redox-active, porous and highly crystalline polyimide-linked COF, i.e., TPDA-NDI-COF, n-type 1,4,5,8-naphthalene tetracarboxylic dianhydride (NDA) molecules are incorporated into p-type TPDA-TA-COF structure via postsynthetic linker exchange method. This tailored COF demonstrated a wide potential window (1.03.6 V vs Na+/Na) with dual redox-active centers, positioning it as a favorable cathode material for sodium-ion batteries (SIBs). Owing to the inheritance of multiple redox functionalities, TPDA-NDI-COF can deliver a specific capacity of 67 mAh g-1 at 0.05 A g-1, which is double the capacity of TPDA-TA-COF (28 mAh g-1). The incorporation of carbon nanotube (CNT) into the TPDA-NDI-COF matrix resulted in an enhancement of specific capacity to 120 mAh g-1 at 0.02 A g-1. TPDA-NDI-50%CNT demonstrated robust cyclic stability and retained a capacity of 92 mAh g-1 even after 10 000 cycles at 1.0 A g-1. Furthermore, the COF cathode exhibited an average discharge voltage of 2.1 V, surpassing the performance of most reported COF as a host material.

2.
Adv Mater ; : e2409354, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344865

RESUMEN

Aqueous ammonium ion batteries have garnered significant research interest due to their safety and sustainability advantages. However, the development of reliable ammonium-based full batteries with consistent electrochemical performance, particularly in terms of cycling stability, remains challenging. A primary issue stems from the lack of suitable anode materials, as the relatively large NH4 + ions can cause structural damage and material dissolution during battery operation. To address this challenge, an Aza-based covalent organic framework (COF) material is introduced as an anode for aqueous ammonium ion batteries. This material exhibits superior ammonium storage capabilities compared to existing anode materials. It operates effectively within a negative potential range of 0.3 to‒1.0 V versus SCE, achieves high capacity even at elevated current densities (≈74 mAh g-1 at 10 A g-1), and demonstrates exceptional stability, retaining a capacity over 20 000 cycles at 1.0 A g-1. Furthermore, by pairing this COF anode with a Prussian blue cathode, an ammonium rocking-chair full battery is developedd that maintains 89% capacity over 20 000 cycles at 1.0 A g-1, surpassing all previously reported ammonium ion full batteries. This study offers insights for the design of future anodes for ammonium ion batteries and holds promise for high-energy storage solutions.

3.
J Am Chem Soc ; 146(20): 14267-14277, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717595

RESUMEN

Converting CO2 to synthetic hydrocarbon fuels is of increasing interest. In light of progress in electrified CO2 to ethylene, we explored routes to dimerize to 1-butene, an olefin that can serve as a building block to ethylene longer-chain alkanes. With goal of selective and active dimerization, we investigate a series of metal-organic frameworks having bimetallic catalytic sites. We find that the tunable pore structure enables optimization of selectivity and that periodic pore channels enhance activity. In a tandem system for the conversion of CO2 to 1-C4H8, wherein the outlet cathodic gas from a CO2-to-C2H4 electrolyzer is fed directly (via a dehumidification stage) into the C2H4 dimerizer, we study the highest-performing MOF found herein: M' = Ru and M″ = Ni in the bimetallic two-dimensional M'2(OAc)4M″(CN)4 MOF. We report a 1-C4H8 production rate of 1.3 mol gcat-1 h-1 and a C2H4 conversion of 97%. From these experimental data, we project an estimated cradle-to-gate carbon intensity of -2.1 kg-CO2e/kg-1-C4H8 when CO2 is supplied from direct air capture and when the required energy is supplied by electricity having the carbon intensity of wind.

4.
ACS Nano ; 17(14): 13961-13973, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37428125

RESUMEN

Proton activity in electrolytes plays a crucial role in deciding the electrochemical performance of aqueous batteries. On the one hand, it can influence the capacity and rate performance of host materials because of the high redox activity of protons. On the other hand, it can also cause a severe hydrogen evolution reaction (HER) when the protons are aggregated near the electrode/electrolyte interface. The HER dramatically limits the potential window and the cycling stability of the electrodes. Therefore, it is critical to clarify the impact of electrolyte proton activity on the battery macro-electrochemical performance. In this work, using an aza-based covalent organic framework (COF) as a representative host material, we studied the effect of electrolyte proton activity on the potential window, storage capacity, rate performance, and cycle stability in various electrolytes. A tradeoff relationship between proton redox reactions and the HER in the COF host is revealed by utilizing various in situ and ex situ characterizations. Moreover, the origin of proton activity in near-neutral electrolytes is discussed in detail and is confirmed to be related to the hydrated water molecules in the first solvation shell. A detailed analysis of the charge storage process in the COFs is presented. These understandings can be of importance for utilizing the electrolyte proton activity to build high-energy aqueous batteries.

5.
J Am Chem Soc ; 145(9): 5074-5082, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36827417

RESUMEN

Heterogeneous photocatalysis is considered as an ecofriendly and sustainable approach for addressing energy and environmental persisting issues. Recently, heterogeneous photocatalysts based on covalent organic frameworks (COFs) have gained considerable attention due to their remarkable performance and recyclability in photocatalytic organic transformations, offering a prospective alternative to homogeneous photocatalysts based on precious metal/organic dyes. Herein, we report Hex-Aza-COF-3 as a metal-free, visible-light-activated, and reusable heterogeneous photocatalyst for the synthesis of 2,3-dihydrobenzofurans, as a pharmaceutically relevant structural motif, via the selective oxidative [3+2] cycloaddition of phenols with olefins. Moreover, we demonstrate the synthesis of natural products (±)-conocarpan and (±)-pterocarpin via the [3+2] cycloaddition reaction as an important step using Hex-Aza-COF-3 as a heterogeneous photocatalyst. Interestingly, the presence of phenazine and hexaazatriphenylene as rigid heterocyclic units in Hex-Aza-COF-3 strengthens the covalent linkages, enhances the absorption in the visible region, and narrows the energy band, leading to excellent activity, charge transport, stability, and recyclability in photocatalytic reactions, as evident from theoretical calculations and real-time information on ultrafast spectroscopic measurements.

6.
J Am Chem Soc ; 144(35): 16052-16059, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35998367

RESUMEN

Covalent organic nanotubes (CONTs) are one-dimensional porous frameworks constructed from organic building blocks via dynamic covalent chemistry. CONTs are synthesized as insoluble powder that restricts their potential applications. The judicious selection of 2,2'-bipyridine-5,5'-dicarbaldehyde and tetraaminotriptycene as building blocks for TAT-BPy CONTs has led to constructing flexible yet robust and self-standing fabric up to 3 µm thickness. The TAT-BPy CONTs and TAT-BPy CONT fabric have been characterized by solid-state one-dimensional (1D) 13C CP-MAS, two-dimensional (2D) 13C-1H correlation NMR, 2D 1H-1H DQ-SQ NMR, and 2D 14N-1H correlation NMR spectroscopy. The mechanism of fabric formation has been established by using high-resolution transmission electron microscopy and scanning electron microscopy techniques. The as-synthesized viscoelastic TAT-BPy CONT fabric exhibits high mechanical strength with a reduced modulus (Er) of 8 (±3) GPa and hardness (H) of 0.6 (±0.3) GPa. Interestingly, the viscoelastic fabric shows time-dependent elastic depth recovery up to 50-70%.

8.
Nat Chem ; 14(5): 507-514, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35288687

RESUMEN

Carbon nanotubes, and synthetic organic nanotubes more generally, have in recent decades been widely explored for application in electronic devices, energy storage, catalysis and biosensors. Despite noteworthy progress made in the synthesis of nanotubular architectures with well-defined lengths and diameters, purely covalently bonded organic nanotubes have remained somewhat challenging to prepare. Here we report the synthesis of covalently bonded porous organic nanotubes (CONTs) by Schiff base reaction between a tetratopic amine-functionalized triptycene and a linear dialdehyde. The spatial orientation of the functional groups promotes the growth of the framework in one dimension, and the strong covalent bonds between carbon, nitrogen and oxygen impart the resulting CONTs with high thermal and chemical stability. Upon ultrasonication, the CONTs form intertwined structures that go on to coil and form toroidal superstructures. Computational studies give some insight into the effect of the solvent in this assembly process.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Aminas , Catálisis , Nanotubos de Carbono/química , Porosidad
9.
J Am Chem Soc ; 143(45): 19178-19186, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34739750

RESUMEN

Ammonium ions (NH4+), as non-metallic charge carriers, have spurred great research interest in the realm of aqueous batteries. Unfortunately, most inorganic host materials used in these batteries are still limited by the sluggish diffusion kinetics. Here, we report a unique hydrogen bond chemistry to employ covalent organic frameworks (COFs) for NH4+ ion storage, which achieves a high capacity of 220.4 mAh g-1 at a current density of 0.5 A g-1. Combining the theoretical simulation and materials analysis, a universal mechanism for the reaction of nitrogen and oxygen bridged by hydrogen bonds is revealed. In addition, we explain the solvation behavior of NH4+, leading to a relationship between redox potential and desolvation energy barrier. This work provides a new insight into NH4+ ion storage in host materials based on hydrogen bond chemistry. This mechanism can be leveraged to design and develop COFs for electrochemical energy storage.

10.
Adv Mater ; 33(39): e2103617, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34365688

RESUMEN

Covalent organic frameworks (COFs) are potentially promising electrode materials for electrochemical charge storage applications thanks to their pre-designable reticular chemistry with atomic precision, allowing precise control of pore size, redox-active functional moieties, and stable covalent frameworks. However, studies on the mechanistic and practical aspects of their zinc-ion storage behavior are still limited. In this study, a strategy to enhance the electrochemical performance of COF cathodes in zinc-ion batteries (ZIBs) by introducing the quinone group into 1,4,5,8,9,12-hexaazatriphenylene-based COFs is reported. Electrochemical characterization demonstrates that the introduction of the quinone groups in the COF significantly pushes up the Zn2+ storage capability against H+ and elevates the average (dis-)charge potential in aqueous ZIBs. Computational and experimental analysis further reveals the favorable redox-active sites that host Zn2+ /H+ in COF electrodes and the root cause for the enhanced electrochemical performance. This work demonstrates that molecular engineering of the COF structure is an effective approach to achieve practical charge storage performance.

11.
J Am Chem Soc ; 141(32): 12570-12581, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31251878

RESUMEN

Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host-guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation.

12.
J Am Chem Soc ; 141(15): 6152-6156, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30945862

RESUMEN

Visible light-mediated photocatalytic organic transformation has drawn significant attention as an alternative process for replacing thermal reactions. Although precious metal/organic dyes based homogeneous photocatalysts have been developed, their toxic and nonreusable nature makes them inappropriate for large-scale production. Therefore, we have synthesized a triazine and a keto functionalized nonmetal based covalent organic framework (TpTt) for heterogeneous photocatalysis. As the catalyst shows significant absorption of visible light, it has been applied for the photocatalytic uphill conversion of trans-stilbene to cis-stilbene in the presence of blue light-emitting diodes with broad substrate scope via an energy transfer process.

13.
J Am Chem Soc ; 141(5): 1807-1822, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30485740

RESUMEN

Covalent organic frameworks (COFs) represent a new field of rapidly growing chemical research that takes direct inspiration from diverse covalent bonds existing between atoms. The success of linking atoms in two and three dimensions to construct extended framework structures moved the chemistry of COFs beyond the structures to methodologies, highlighting the possibility of prospective applications. Although structure to property relation in COFs has led to fascinating properties, chemical stability, processability and scalability were some of the important challenges that needed to be overcome for their successful implementation. In this Perspective, we take a closer look at the growth of COFs from mere supramolecular structures to potential industrializable materials.

14.
ACS Appl Mater Interfaces ; 10(33): 28139-28146, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30052416

RESUMEN

Flexible supercapacitors in modern electronic equipment require light-weight electrodes, which have a high surface area, precisely integrated redox moieties, and mechanically strong flexible free-standing nature. However, the incorporation of the aforementioned properties into a single electrode remains a great task. Herein, we could overcome these challenges by a facile and scalable synthesis of the convergent covalent organic framework (COF) free-standing flexible thin sheets through solid-state molecular baking strategy. Here, redox-active anthraquinone (Dq) and π-electron-rich anthracene (Da) are judiciously selected as two different linkers in a ß-ketoenamine-linked two-dimensional (2D) COF. As a result of precisely integrated anthraquinone moieties, COF thin sheet exhibits redox activity. Meanwhile, π-electron-rich anthracene linker assists to improve the mechanical property of the free-standing thin sheet through the enhancement of noncovalent interaction between crystallites. This binder-free strategy offers the togetherness of crystallinity and flexibility in 2D COF thin sheets. Also, the synthesized porous crystalline convergent COF thin sheets are benefited with crack-free uniform surface and light-weight nature. Further, to demonstrate the practical utility of the material as an electrode in energy-storage systems, we fabricated a solid-state symmetrical flexible COF supercapacitor device using a GRAFOIL peeled carbon tape as the current collector.

15.
ACS Appl Mater Interfaces ; 9(15): 13785-13792, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28368103

RESUMEN

The development of nanoparticle-polymer-hybrid-based heterogeneous catalysts with high reactivity and good recyclability is highly desired for their applications in the chemical and pharmaceutical industries. Herein, we have developed a novel synthetic strategy by choosing a predesigned metal-anchored building block for in situ generation of metal (Pd) nanoparticles in the stable, porous, and crystalline covalent organic framework (COF), without using conventional reducing agents. In situ generation of Pd nanoparticles in the COF skeleton is explicitly confirmed from PXRD, XPS, TEM images, and 15N NMR spectral analysis. This hybrid material is found to be an excellent reusable heterogeneous catalyst for the synthesis of biologically and pharmaceutically important 2-substituted benzofurans from 2-bromophenols and terminal alkynes via a tandem process with the turnover number up to 1101. The heterogeneity of the catalytic process is unambiguously verified by a mercury poisoning experiment and leaching test. This hybrid material shows superior catalytic performance compared to commercially available homogeneous as well as heterogeneous Pd catalysts.

16.
Chem Commun (Camb) ; 53(32): 4461-4464, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28379229

RESUMEN

A visible light active porphyrin-based porous organic polymer having high chemical stability and surface area has been synthesized and its ability to influence the photocatalytic activity of large band gap-TiO2 nanoparticles has been tested. The resultant composite shows improved photocatalytic activity as compared to the parent precursors. This study provides insights into the photosensitizing ability of the polymer in addition to its ability to firmly harbor nanoparticles onto its surface.

17.
J Am Chem Soc ; 139(12): 4513-4520, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28256830

RESUMEN

Covalent organic nanosheets (CONs) have emerged as a new class of functional two-dimensional (2D) porous organic polymeric materials with a high accessible surface, diverse functionality, and chemical stability. They could become versatile candidates for targeted drug delivery. Despite their many advantages, there are limitations to their use for target specific drug delivery. We anticipated that these drawbacks could be overturned by judicious postsynthetic modification steps to use CONs for targeted drug delivery. The postsynthetic modification would not only produce the desired functionality, it would also help to exfoliate to CONs as well. In order to meet this requirement, we have developed a facile, salt-mediated synthesis of covalent organic frameworks (COFs) in the presence of p-toluenesulfonic acid (PTSA). The COFs were subjected to sequential postsynthetic modifications to yield functionalized targeted CONs for targeted delivery of 5-fluorouracil to breast cancer cells. This postsynthetic modification resulted in simultaneous chemical delamination and functionalization to targeted CONs. Targeted CONs showed sustained release of the drug to the cancer cells through receptor-mediated endocytosis, which led to cancer cell death via apoptosis. Considering the easy and facile COF synthesis, functionality based postsynthetic modifications, and chemical delamination to CONs for potential advantageous targeted drug delivery, this process can have a significant impact in biomedical applications.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Bencenosulfonatos/química , Sistemas de Liberación de Medicamentos , Fluorouracilo/farmacología , Estructuras Metalorgánicas/química , Nanoestructuras/química , Antimetabolitos Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Fluorouracilo/química , Humanos , Estructuras Metalorgánicas/síntesis química , Estructura Molecular , Tamaño de la Partícula , Relación Estructura-Actividad , Propiedades de Superficie
18.
Adv Mater ; 29(2)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28066986

RESUMEN

Self-standing, flexible, continuous, and crack-free covalent-organic-framework membranes (COMs) are fabricated via a simple, scalable, and highly cost-effective methodology. The COMs show long-term durability, recyclability, and retain their structural integrity in water, organic solvents, and mineral acids. COMs are successfully used in challenging separation applications and recovery of valuable active pharmaceutical ingredients from organic solvents.

19.
J Am Chem Soc ; 139(5): 1856-1862, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28106987

RESUMEN

Research on covalent organic frameworks (COFs) has recently gathered significant momentum by the virtue of their predictive design, controllable porosity, and long-range ordering. However, the lack of solvent-free and easy-to-perform synthesis processes appears to be the bottleneck toward their greener fabrication, thereby limiting their possible potential applications. To alleviate such shortcomings, we demonstrate a simple route toward the rapid synthesis of highly crystalline and ultraporous COFs in seconds using a novel salt-mediated crystallization approach. A high degree of synthetic control in interlayer stacking and layer planarity renders an ordered network with a surface area as high as 3000 m2 g-1. Further, this approach has been extrapolated for the continuous synthesis of COFs by means of a twin screw extruder and in situ processes of COFs into different shapes mimicking the ancient terracotta process. Finally, the regular COF beads are shown to outperform the leading zeolites in water sorption performance, with notably facile regeneration ability and structural integrity.

20.
IUCrJ ; 3(Pt 6): 402-407, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27840679

RESUMEN

The formation of keto-enamine based crystalline, porous polymers in water is investigated for the first time. Facile access to the Schiff base reaction in water has been exploited to synthesize stable porous structures using the principles of Dynamic Covalent Chemistry (DCC). Most credibly, the water-based Covalent Organic Frameworks (COFs) possess chemical as well as physical properties such as crystallinity, surface area and porosity, which is comparable to their solvothermal counterparts. The formation of COFs in water is further investigated by understanding the nature of the monomers formed using hydroxy and non-hydroxy analogues of the aldehyde. This synthetic route paves a new way to synthesize COFs using a viable, greener route by utilization of the DCC principles in conjunction with the keto-enol tautomerism to synthesize useful, stable and porous COFs in water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...