Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163126

RESUMEN

Epilepsy is a severe neurological disease characterized by spontaneous recurrent seizures (SRS). A complex pathophysiological process referred to as epileptogenesis transforms a normal brain into an epileptic one. Prevention of epileptogenesis is a subject of intensive research. Currently, there are no clinically approved drugs that can act as preventive medication. Our previous studies have revealed highly promising antiepileptogenic properties of a compound-myo-inositol (MI) and the present research broadens previous results and demonstrates the long-term disease-modifying effect of this drug, as well as the amelioration of cognitive comorbidities. For the first time, we show that long-term treatment with MI: (i) decreases the frequency and duration of electrographic SRS in the hippocampus; (ii) has an ameliorating effect on spatial learning and memory deficit associated with epileptogenesis, and (iii) attenuates cell loss in the hippocampus. MI treatment also alters the expression of the glial fibrillary acidic protein, LRRC8A subunit of volume-regulated anion channels, and protein tyrosine phosphatase receptor type R, all expected to counteract the epileptogenesis. All these effects are still present even 4 weeks after MI treatment ceased. This suggests that MI may exert multiple actions on various epileptogenesis-associated changes in the brain and, therefore, could be considered as a candidate target for prevention of epileptogenesis.


Asunto(s)
Epilepsia/tratamiento farmacológico , Inositol/farmacología , Ácido Kaínico/toxicidad , Trastornos de la Memoria/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Complejo Vitamínico B/farmacología , Animales , Antinematodos/toxicidad , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Epilepsia/patología , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/patología , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/patología
2.
Exp Brain Res ; 238(10): 2385-2397, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32770352

RESUMEN

The medial septum (MS) is an important modulator of hippocampal function. The degree of damage in which the particular set of septo-hippocampal projections contributes to the deficits of spatial memory with concomitant changes of hippocampal receptors expression has not been studied till present. Therefore, we investigated spatial memory and the expression level of cholinergic (α7 nACh and M1), GABAergic (α1 subunit of GABAA) and glutamatergic (NR2B subunit of NMDA and GluR 1 subunit of AMPA) receptors in the hippocampus following selective lesions of cholinergic and GABAergic septo-hippocampal projection. Learning process and long-term spatial memory were assessed using a Morris water maze. The obtained results revealed that in contrast to cholinergic lesions, rats with MS GABAergic lesions exhibit a retention deficit in 3 days after training. Western blot analyses revealed the MS cholinergic lesions have significant effect on the expression level of the M1 mACh receptors, while MS GABAergic lesions induce dramatic modulations of hippocampal glutamatergic, cholinergic and GABAergic receptors expression. These results for the first time demonstrated that selective lesions of MS cholinergic and GABAergic neurons differentially affect long-term spatial memory and the memory deficit after MS GABAergic lesion is paralleled with significant changes of hippocampal glutamate, GABA and acetylcholine receptors expression.


Asunto(s)
Neuronas GABAérgicas , Memoria Espacial , Animales , Colinérgicos , Hipocampo , Aprendizaje por Laberinto , Ratas , Receptores de Neurotransmisores
3.
Neuroreport ; 31(4): 281-286, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31834143

RESUMEN

The present study was designed to investigate the effects of okadaic acid intracerebroventricular (ICV) injection on memory function and expression level of α7 subunit of nicotinic acetylcholine receptor (nAChR) and NR2B subunit of NMDA glutamate receptors in the hippocampus, as well as effect of the antidementic drug memantine on okadaic acid induced changes at systemic and molecular levels in rats. Okadaic acid was dissolved in artificial cerebrospinal fluid (aCSF) and injected ICV 200 ng/10 µl. Vehicle control received 10 µl of aCSF ICV bilaterally. Control and okadaic acid injected rats were divided into two subgroups: treated i.p. with saline or memantine (5 mg/kg daily for 13 days starting from the day of okadaic acid injection). Rats were trained in the dual-solution plus-maze task that can be solved by using place or response strategies. The Western immunoblotting was used to determine relative amount of hippocampal receptors protein levels. Obtained data revealed that okadaic acid ICV injected rats were severely impaired at acquiring the place version of the maze accompanied by significant decline in hippocampal α7 subunit of nACh receptors protein levels. Memantine treatment can prevent okadaic acid induced impairment of hippocampal-dependent spatial memory and accompanied by modulation of the expression level of α7 subunit of nACh and NR2B subunit of NMDA receptors in the hippocampus. Thus, our results support the presumption that α7 nACh receptors may play an important role in the cognitive enhancer effects of memantine and emphasize the role of cholinergic-glutamatergic interactions in memory.


Asunto(s)
Hipocampo/efectos de los fármacos , Memantina/farmacología , Ácido Ocadaico/toxicidad , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/toxicidad , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/metabolismo , Inyecciones Intraventriculares , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ácido Ocadaico/administración & dosificación , Ratas
4.
Neuroreport ; 30(16): 1129-1134, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31568207

RESUMEN

Epilepsy is one of the most widespread neurological diseases characterized by spontaneous recurrent seizures. There is no cure for epilepsy, and available pharmacological treatments with anti-seizure drugs are only symptomatic. Moreover, about third of epilepsy patients are resistant to the anti-seizure drugs. Thus, it is essential to discover new anti-epilepsy drugs. Recently, myo-inositol has been identified as a promising antiepileptic compound. In the present study, using electrophysiological method, we examined for the first time, the effect of myo-inositol on the generation of epileptic afterdischarges in the hippocampus evoked by a local electrical stimulation. This was achieved by implanting two electrodes with a cannula into the same dorsal hippocampus, which allowed for simultaneous local injection of myo-inositol or saline and afterdischarges induction and recording from the same hippocampus. We found that myo-inositol has time- and concentration-dependent effects on the evoked afterdischarges. Specifically, 5 minutes after 1 M myo-inositol infusion, the afterdischarges duration was significantly decreased as compared to preinjection durations in the same animals and also as compared to preinjection level durations in saline injected or contralateral hippocampus myo-inositol infused animals. Further, 0.055 M myo-inositol significantly decreased afterdischarges duration at 5 minutes as compared to 40 minutes post-injection. At both concentrations, the afterdischarges duration recovered to the pre-injection value at 40 minutes after the myo-inositol injection. The present data, taken together with our previous results, strongly suggest that myo-inositol has significant local seizure-suppressant effect.


Asunto(s)
Anticonvulsivantes/farmacología , Epilepsia/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Inositol/farmacología , Convulsiones/tratamiento farmacológico , Estimulación Eléctrica/métodos , Electrodos Implantados , Electroencefalografía/métodos , Epilepsia/fisiopatología , Hipocampo/metabolismo , Humanos , Convulsiones/fisiopatología , Factores de Tiempo
5.
Biomed Res Int ; 2019: 4518160, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941363

RESUMEN

Epilepsy is one of the most devastating neurological diseases and despite significant efforts there is no cure available. Occurrence of spontaneous seizures in epilepsy is preceded by numerous functional and structural pathophysiological reorganizations in the brain-a process called epileptogenesis. Treatment strategies targeting this process may be efficient for preventing spontaneous recurrent seizures (SRS) in epilepsy, or for modification of disease progression. We have previously shown that (i) myoinositol (MI) pretreatment significantly decreases severity of acute seizures (status epilepticus: SE) induced by kainic acid (KA) in experimental animals and (ii) that daily post-SE administration of MI for 4 weeks prevents certain biochemical changes triggered by SE. However it was not established whether such MI treatment also exerts long-term effects on the frequency of SRS. In the present study we have shown that, in KA-induced post-SE epilepsy model in rats, MI treatment for 28 days reduces frequency and duration of behavioural SRS not only during the treatment, but also after its termination for the following 4 weeks. Moreover, MI has significant effects on molecular changes in the hippocampus, including mi-RNA expression spectrum, as well as mRNA levels of sodium-MI transporter and LRRC8A subunit of the volume regulated anionic channel. Taken together, these data suggest that molecular changes induced by MI treatment may counteract epileptogenesis. Thus, here we provide data indicating antiepileptogenic properties of MI, which further supports the idea of developing new antiepileptogenic and disease modifying drug that targets MI system.


Asunto(s)
Conducta Animal , Epilepsia/inducido químicamente , Epilepsia/metabolismo , Inositol/uso terapéutico , Convulsiones/tratamiento farmacológico , Animales , Epilepsia/terapia , Inositol/farmacología , Ácido Kaínico , Factores de Tiempo
6.
Biochem Biophys Rep ; 4: 111-125, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29124194

RESUMEN

The aim of the work was to evaluate whether or not there is glycolytic reprogramming in the neighboring cells of colorectal cancer (CRC). Using postoperative material we have compared the functional capacity of oxidative phosphorylation (OXPHOS) in CRC cells, their glycolytic activity and their inclination to aerobic glycolysis, with those of the surrounding and healthy colon tissue cells. Experiments showed that human CRC cannot be considered a hypoxic tumor, since the malignancy itself and cells surrounding it exhibited even higher rates of OXPHOS than healthy large intestine. The absence of acute hypoxia in colorectal carcinomas was also confirmed by their practically equal glucose-phosphorylating capacity as compared with surrounding non-tumorous tissue and by upregulation of VEGF family and their ligands. Studies indicated that human CRC cells in vivo exert a strong distant effect on the energy metabolism of neighboring cells, so that they acquire the bioenergetic parameters specific to the tumor itself. The growth of colorectal carcinomas was associated with potent downregulation of the creatine kinase system. As compared with healthy colon tissue, the tumor surrounding cells display upregulation of OXPHOS and have high values of basal and ADP activated respiration rates. Strong differences between the normal and CRC cells in the affinity of their mitochondria for ADP were revealed; the corresponding Km values were measured as 93.6±7.7 µM for CRC cells and 84.9±9.9 µM for nearby tissue; both these apparent Km (ADP) values were considerably (by almost 3 times) lower in comparison with healthy colon tissue cells (256±34 µM).

7.
Int J Biochem Cell Biol ; 55: 171-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25218857

RESUMEN

The aim of this study is to characterize the function of mitochondria and main energy fluxes in human colorectal cancer (HCC) cells. We have performed quantitative analysis of cellular respiration in post-operative tissue samples collected from 42 cancer patients. Permeabilized tumor tissue in combination with high resolution respirometry was used. Our results indicate that HCC is not a pure glycolytic tumor and the oxidative phosphorylation (OXPHOS) system may be the main provider of ATP in these tumor cells. The apparent Michaelis-Menten constant (Km) for ADP and maximal respiratory rate (Vm) values were calculated for the characterization of the affinity of mitochondria for exogenous ADP: normal colon tissue displayed low affinity (Km = 260 ± 55 µM) whereas the affinity of tumor mitochondria was significantly higher (Km = 126 ± 17 µM). But concurrently the Vm value of the tumor samples was 60-80% higher than that in control tissue. The reason for this change is related to the increased number of mitochondria. Our data suggest that in both HCC and normal intestinal cells tubulin ß-II isoform probably does not play a role in the regulation of permeability of the MOM for adenine nucleotides. The mitochondrial creatine kinase energy transfer system is not functional in HCC and our experiments showed that adenylate kinase reactions could play an important role in the maintenance of energy homeostasis in colorectal carcinomas instead of creatine kinase. Immunofluorescent studies showed that hexokinase 2 (HK-2) was associated with mitochondria in HCC cells, but during carcinogenesis the total activity of HK did not change. Furthermore, only minor alterations in the expression of HK-1 and HK-2 isoforms have been observed. Metabolic Control analysis showed that the distribution of the control over electron transport chain and ATP synthasome complexes seemed to be similar in both tumor and control tissues. High flux control coefficients point to the possibility that the mitochondrial respiratory chain is reorganized in some way or assembled into large supercomplexes in both tissues.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/genética , Creatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Hexoquinasa/metabolismo , Humanos , Inmunohistoquímica , Microscopía Confocal , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA