Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Oncoimmunology ; 12(1): 2241710, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546696

RESUMEN

Lung cancer remains among the most difficult-to-treat malignancies and is the leading cause of cancer-related deaths worldwide. The introduction of targeted therapies and checkpoint inhibitors has improved treatment outcomes; however, most patients with advanced-stage non-small cell lung cancer (NSCLC) eventually fail these therapies. Therefore, there is a major unmet clinical need for checkpoint refractory/resistant NSCLC. Here, we tested the combination of aPD-1 and adenovirus armed with TNFα and IL-2 (Ad5-CMV-mTNFα/mIL-2) in an immunocompetent murine NSCLC model. Moreover, although local delivery has been standard for virotherapy, treatment was administered intravenously to facilitate clinical translation and putative routine use. We showed that treatment of tumor-bearing animals with aPD-1 in combination with intravenously injected armed adenovirus significantly decreased cancer growth, even in the presence of neutralizing antibodies. We observed an increased frequency of cytotoxic tumor-infiltrating lymphocytes, including tumor-specific cells. Combination treatment led to a decreased percentage of immunosuppressive tumor-associated macrophages and an improvement in dendritic cell maturation. Moreover, we observed expansion of the tumor-specific memory T cell compartment in secondary lymphoid organs in the group that received aPD-1 with the virus. However, although the non-replicative Ad5-CMV-mTNFα/mIL-2 virus allows high transgene expression in the murine model, it does not fully reflect the clinical outcome in humans. Thus, we complemented our findings using NSCLC ex vivo models fully permissive for the TNFα and IL-2- armed oncolytic adenovirus TILT-123. Overall, our data demonstrate the ability of systemically administered adenovirus armed with TNFα and IL-2 to potentiate the anti-tumor efficacy of aPD-1 and warrant further investigation in clinical trials.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Interleucina-2 , Neoplasias Pulmonares , Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratones , Adenoviridae/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Interleucina-2/genética , Interleucina-2/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/uso terapéutico , Inhibidores de Puntos de Control Inmunológico
2.
Front Immunol ; 14: 1060540, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817448

RESUMEN

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic adenoviruses is the Syrian hamster, for which an ICI, mainly an anti-PD-L1 monoclonal antibody (mAb) was not previously available. In this study, we developed an anti-Syrian hamster PD-L1 mAb to enable the evaluation of safety and efficacy, when combining anti-PD-L1 with an oncolytic adenovirus encoding tumour necrosis factor alpha (TNFα) and interleukin-2 (IL-2) (Ad5/3-E2F-D24-hTNFα-IRES-hIL-2 or TILT-123). Methods: Recombinant Syrian hamster PD-L1 was expressed and mice immunized for mAb formation using hybridoma technology. Clonal selection through binding and functional studies in vitro, in silico and in vivo identified anti-PD-L1 clone 11B12-1 as the primary mAb candidate for immunotherapy modelling. The oncolytic virus (OV) and ICI combination approach was then evaluated using 11B12-1 and TILT-123 in a Syrian hamster model of pancreatic ductal adenocarcinoma (PDAC). Results: Supernatants from hybridoma parent subclone 11B12B4 provided the highest positive PD-L1 signal, on Syrian hamster PBMCs and three cancer cell lines (HT100, HapT1 and HCPC1). In vitro co-cultures revealed superior immune modulated profiles of cell line matched HT100 tumour infiltrating lymphocytes when using subclones of 7G2, 11B12 and 12F1. Epitope binning and epitope prediction using AlphaFold2 and ColabFold revealed two distinct functional epitopes for clone 11B12-1 and 12F1-1. Treatment of Syrian hamsters bearing HapT1 tumours, with 11B12-1 induced significantly better (p<0.05) tumour growth control than isotype control by day 12. 12F1-1 did not induce significant tumour growth control. The combination of 11B12-1 with oncolytic adenovirus TILT-123 improved tumour growth control further, when compared to monotherapy (p<0.05) by day 26. Conclusions: Novel Syrian hamster anti-PD-L1 clone 11B12-1 induces tumour growth control in a hamster model of PDAC. Combining 11B12-1 with oncolytic adenovirus TILT-123 improves tumour growth control further and demonstrates good safety and toxicity profiles.


Asunto(s)
Carcinoma Ductal Pancreático , Virus Oncolíticos , Neoplasias Pancreáticas , Cricetinae , Animales , Ratones , Mesocricetus , Inhibidores de Puntos de Control Inmunológico , Adenoviridae , Neoplasias Pancreáticas/terapia , Inmunoterapia , Anticuerpos Monoclonales , Replicación Viral , Neoplasias Pancreáticas
3.
Clin Cancer Res ; 29(16): 3110-3123, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805632

RESUMEN

PURPOSE: Deficiency in homologous recombination (HR) repair of DNA damage is characteristic of many high-grade serous ovarian cancers (HGSC). It is imperative to identify patients with homologous recombination-deficient (HRD) tumors as they are most likely to benefit from platinum-based chemotherapy and PARP inhibitors (PARPi). Existing methods measure historical, not necessarily current HRD and/or require high tumor cell content, which is not achievable for many patients. We set out to develop a clinically feasible assay for identifying functionally HRD tumors that can predict clinical outcomes. EXPERIMENTAL DESIGN: We quantified RAD51, a key HR protein, in immunostained formalin-fixed, paraffin-embedded (FFPE) tumor samples obtained from chemotherapy-naïve and neoadjuvant chemotherapy (NACT)-treated HGSC patients. We defined cutoffs for functional HRD separately for these sample types, classified the patients accordingly as HRD or HR-proficient, and analyzed correlations with clinical outcomes. From the same specimens, genomics-based HRD estimates (HR gene mutations, genomic signatures, and genomic scars) were also determined, and compared with functional HR (fHR) status. RESULTS: fHR status significantly predicted several clinical outcomes, including progression-free survival (PFS) and overall survival (OS), when determined from chemo-naïve (PFS, P < 0.0001; OS, P < 0.0001) as well as NACT-treated (PFS, P < 0.0001; OS, P = 0.0033) tumor specimens. The fHR test also identified as HRD those PARPi-at-recurrence-treated patients with longer OS (P = 0.0188). CONCLUSIONS: We developed an fHR assay performed on routine FFPE specimens, obtained from either chemo-naïve or NACT-treated HGSC patients, that can significantly predict real-world platinum-based chemotherapy and PARPi response. See related commentary by Garg and Oza, p. 2957.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Recombinación Homóloga/genética , Mutación , Reparación del ADN por Recombinación/genética , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
4.
Mol Ther Oncolytics ; 28: 59-73, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36699617

RESUMEN

Immunotherapy with bispecific T cell engagers has shown efficacy in patients with hematologic malignancies and uveal melanoma. Antitumor effects of bispecific T cell engagers in most solid tumors are limited due to their short serum half-life and insufficient tumor concentration. We designed a novel serotype 5/3 oncolytic adenovirus encoding a human mucin1 antibody and the human CD3 receptor, Ad5/3-E2F-d24-aMUC1aCD3 (TILT-321). TILT-321 is engineered to replicate only in cancer cells, leading to a high concentration of the aMUC1aCD3 molecule in the tumor microenvironment. Infection and cell viability assays were performed to determine the oncolytic potential of the novel construct. The functionality of the virus-derived aMUC1aCD3 was evaluated in vitro. When TILT-321 was combined with allogeneic T cells, rapid tumor cell lysis was observed. TILT-321-infected cells secreted functional aMUC1aCD3, as shown by increased T cell activity and its binding to MUC1 and CD3. In vivo, TILT-321 treatment led to effective antitumor efficacy mediated by increased intratumoral T cell activity in an A549 and patient-derived ovarian cancer xenograft mouse model humanized with peripheral blood mononuclear cells (PBMC). This study provides a proof of concept for an effective strategy to overcome the key limitations of recombinant bispecific T cell engager delivery for solid tumor treatment.

5.
Int J Cancer ; 152(9): 1837-1846, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36571455

RESUMEN

Survival studies are an important indicator of the success of cancer control. We analyzed the 5-year relative survival in 23 solid cancers in Denmark, Finland, Norway and Sweden over a 50-year period (1970-2019) at the NORDCAN database accessed from the International Agency for Research on Cancer website. We plotted survival curves in 5-year periods and showed 5-year periodic survival. The survival results were summarized in four groups: (1) cancers with historically good survival (>50% in 1970-1974) which include melanoma and breast, endometrial and thyroid cancers; (2) cancers which constantly improved survival at least 20% units over the 50 year period, including cancers of the stomach, colon, rectum, kidney, brain and ovary; (3) cancer with increase in survival >20% units with changes taking place in a narrow time window, including oral, oropharyngeal, testicular and prostate cancers; (4) the remaining cancers with <20% unit improvement in survival including lung, esophageal, liver, pancreatic, bladder, soft tissue, penile, cervical and vulvar cancers. For cancers in groups 1 and 2, the constant development implied multiple improvements in therapy, diagnosis and patient care. Cancers in group 3 included testicular cancers with known therapeutic improvements but for the others large incidence changes probably implied that cancer stage (prostate) or etiology (oropharynx) changed into a more tractable form. Group 4 cancers included those with dismal survival 50 years ago but a clear tendency upwards. In 17 cancers 5-year survival reached between 50% and 100% while in only six cancers it remained at below 50%.


Asunto(s)
Neoplasias , Neoplasias Testiculares , Masculino , Femenino , Humanos , Tasa de Supervivencia , Factores de Riesgo , Países Escandinavos y Nórdicos , Finlandia/epidemiología , Suecia/epidemiología , Sistema de Registros , Incidencia , Dinamarca/epidemiología
6.
Br J Cancer ; 128(4): 678-690, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36476658

RESUMEN

Many efforts are underway to develop novel therapies against the aggressive high-grade serous ovarian cancers (HGSOCs), while our understanding of treatment options for low-grade (LGSOC) or mucinous (MUCOC) of ovarian malignancies is not developing as well. We describe here a functional precision oncology (fPO) strategy in epithelial ovarian cancers (EOC), which involves high-throughput drug testing of patient-derived ovarian cancer cells (PDCs) with a library of 526 oncology drugs, combined with genomic and transcriptomic profiling. HGSOC, LGSOC and MUCOC PDCs had statistically different overall drug response profiles, with LGSOCs responding better to targeted inhibitors than HGSOCs. We identified several subtype-specific drug responses, such as LGSOC PDCs showing high sensitivity to MDM2, ERBB2/EGFR inhibitors, MUCOC PDCs to MEK inhibitors, whereas HGSOCs showed strongest effects with CHK1 inhibitors and SMAC mimetics. We also explored several drug combinations and found that the dual inhibition of MEK and SHP2 was synergistic in MAPK-driven EOCs. We describe a clinical case study, where real-time fPO analysis of samples from a patient with metastatic, chemorefractory LGSOC with a CLU-NRG1 fusion guided clinical therapy selection. fPO-tailored therapy with afatinib, followed by trastuzumab and pertuzumab, successfully reduced tumour burden and blocked disease progression over a five-year period. In summary, fPO is a powerful approach for the identification of systematic drug response differences across EOC subtypes, as well as to highlight patient-specific drug regimens that could help to optimise therapies to individual patients in the future.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Humanos , Femenino , Medicina de Precisión , Neoplasias Ováricas/genética , Carcinoma Epitelial de Ovario/patología , Cistadenocarcinoma Seroso/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos
7.
Diseases ; 10(3)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35997357

RESUMEN

Ovarian cancer (OvCa) is one of the most common gynecological cancers and has the highest mortality in this category. Tumors are often detected late, and unfortunately over 70% of OvCa patients experience relapse after first-line treatments. OvCa has shown low response rates to immune checkpoint inhibitor (ICI) treatments, thus leaving room for improvement. We have shown that oncolytic adenoviral therapy with Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (aka. TILT-123) is promising for single-agent treatment of cancer, but also for sensitizing tumors for T-cell dependent immunotherapy approaches, such as ICI treatments. Therefore, this study set out to determine the effect of inhibition of the immune checkpoint inhibitors (ICI), in the context of TILT-123 therapy of OvCa. We show that simultaneous treatment of patient derived samples with TILT-123 and ICIs anti-PD-1 or anti-PD-L1 efficiently reduced overall viability. The combinations induced T cell activation, T cells expressed activation markers more often, and the treatment caused positive microenvironment changes, measured by flow cytometric assays. Furthermore, in an immunocompetent in vivo C57BL/6NHsda mouse model, tumor growth was hindered, when treated with TILT-123, ICI or both. Taken together, this study provides a rationale for using TILT-123 virotherapy in combination with TILT-123 and immune checkpoint inhibitors together in an ovarian cancer OvCa clinical trial.

8.
Oncoimmunology ; 11(1): 2096572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845722

RESUMEN

Cytokines have proven to be effective for cancer therapy, however whilst low-dose monotherapy with cytokines provides limited therapeutic benefit, high-dose treatment can lead to a number of adverse events. Interleukin 7 has shown promising results in clinical trials, but anti-cancer effect was limited, in part due to a low concentration of the cytokine within the tumor. We hypothesized that arming an oncolytic adenovirus with Interleukin 7, enabling high expression localized to the tumor microenvironment, would overcome systemic delivery issues and improve therapeutic efficacy. We evaluated the effects of Ad5/3-E2F-d24-hIL7 (TILT-517) on tumor growth, immune cell activation and cytokine profiles in the tumor microenvironment using three clinically relevant animal models and ex vivo tumor cultures. Our data showed that local treatment of tumor bearing animals with Ad5/3- E2F-d24-hIL7 significantly decreased cancer growth and increased frequency of tumor-infiltrating cells. Ad5/3-E2F-d24-hIL7 promoted notable upregulation of pro-inflammatory cytokines, and concomitant activation and migration of CD4+ and CD8 + T cells. Interleukin 7 expression within the tumor was positively correlated with increased number of cytotoxic CD4+ cells and IFNg-producing CD4+ and CD8+ cells. These findings offer an approach to overcome the current limitations of conventional IL7 therapy and could therefore be translated to the clinic.


Asunto(s)
Infecciones por Adenoviridae , Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae/genética , Animales , Línea Celular Tumoral , Citocinas , Interleucina-7 , Linfocitos Infiltrantes de Tumor , Viroterapia Oncolítica/métodos
9.
BMC Cancer ; 22(1): 456, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35473606

RESUMEN

BACKGROUND: Incidence of cervical cancer has been reduced by organized screening while for vaginal and vulvar cancers no systematic screening has been implemented. All these cancers are associated with human papilloma virus (HPV) infection. We wanted to analyze incidence trends and relative survival in these cancers with specific questions about the possible covariation of incidence, survival changes coinciding with incidence changes and the role of treatment in survival. We used nationwide cancer registry data for Denmark (DK), Finland (FI), Norway (NO) and Sweden (SE) to address these questions. METHODS: We use the NORDCAN database for the analyses: incidence data were available from 1943 in DK, 1953 in FI and NO and 1960 in SE, through 2016. Survival data were available from 1967 through 2016. World standard population was used in age standardization. RESULTS: In each country the incidence of cervical cancer declined subsequent to rolling out of screening activities. The attained plateau incidence was lowest at 4/100,000 in FI and highest at 10/100,000 in DK and NO. The incidence of vaginal and vulvar cancer remained relatively constant at about 2/100,000. Relative 1-year survival in cervical cancer improved in all countries from low 80%s to high 80%s in the 50-year period, and 5-year survival improved also but at 20% units lower level. Survival gains were found only in patients diagnosed before age 60 years. Survival in vaginal and vulvar cancer followed the same patterns but at a few % units lower level. CONCLUSION: Cervical cancer screening appeared to have reached its limits in the Nordic countries by year 2000. Novel treatments, such as immunotherapy, would be needed to improve survival until HPV vaccination will reach population coverage and boost the global fight against these cancers.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Neoplasias de la Vulva , Dinamarca/epidemiología , Detección Precoz del Cáncer , Femenino , Finlandia/epidemiología , Humanos , Incidencia , Persona de Mediana Edad , Noruega/epidemiología , Suecia/epidemiología , Neoplasias del Cuello Uterino/prevención & control , Neoplasias del Cuello Uterino/terapia , Neoplasias de la Vulva/epidemiología , Neoplasias de la Vulva/terapia
10.
J Immunother Cancer ; 10(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35193929

RESUMEN

BACKGROUND: Oncolytic viruses are a potent form of active immunotherapy, capable of invoking antitumor T-cell responses. Meanwhile, less is known about their effects on immune checkpoints, the main targets for passive immunotherapy of cancer. T-cell immunoglobulin and mucin domain-3 (TIM-3) is a coinhibitory checkpoint driving T-cell exhaustion in cancer. Here we investigated the effects of oncolytic adenovirus on the TIM-3 checkpoint on tumor-infiltrating immune cells and clinical impact in patients with cancer receiving oncolytic immunotherapy. METHODS: Modulation of TIM-3 expression on tumor-infiltrating immune cells was studied preclinically in B16 melanoma following intratumoral treatment with Ad5/3∆24-granulocyte-macrophage colony-stimulating factor oncolytic adenovirus. We conducted a retrospective longitudinal analysis of 15 patients with advanced-stage cancer with tumor-site biopsies before and after oncolytic immunotherapy, treated in the Advanced Therapy Access Program (ISRCTN10141600, April 5, 2011). Following patient stratification with regard to TIM-3 (increase vs decrease in tumors), overall survival and imaging/marker responses were evaluated by log-rank and Fisher's test, while coinhibitory receptors/ligands, transcriptomic changes and tumor-reactive and tumor-infltrating immune cells in biopsies and blood samples were studied by microarray rank-based statistics and immunoassays. RESULTS: Preclinically, TIM-3+ tumor-infiltrating lymphocytes (TILs) in B16 melanoma showed an exhausted phenotype, whereas oncolytic adenovirus treatment significantly reduced the proportion of TIM-3+ TIL subset through recruitment of less-exhausted CD8+ TIL. Decrease of TIM-3 was observed in 60% of patients, which was associated with improved overall survival over TIM-3 increase patients (p=0.004), together with evidence of clinical benefit by imaging and blood analyses. Coinhibitory T-cell receptors and ligands were consistently associated with TIM-3 changes in gene expression data, while core transcriptional exhaustion programs and T-cell dysfunction were enriched in patients with TIM-3 increase, thus identifying patients potentially benefiting from checkpoint blockade. In striking contrast, patients with TIM-3 decrease displayed an acute inflammatory signature, redistribution of tumor-reactive CD8+ lymphocytes and higher influx of CD8+ TIL into tumors, which were associated with the longest overall survival, suggesting benefit from active immunotherapy. CONCLUSIONS: Our results indicate a key role for the TIM-3 immune checkpoint in oncolytic adenoviral immunotherapy. Moreover, our results identify TIM-3 as a potential biomarker for oncolytic adenoviruses and create rationale for combination with passive immunotherapy for a subset of patients.


Asunto(s)
Adenoviridae/patogenicidad , Biomarcadores de Tumor/metabolismo , Linfocitos T CD8-positivos/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Inmunoterapia/métodos , Neoplasias/genética , Virus Oncolíticos/patogenicidad , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Linfocitos T , Microambiente Tumoral
11.
Oncoimmunology ; 11(1): 2028960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35083096

RESUMEN

Intratumoral immunotherapies are entering clinical use but concerns remain regarding their effects on non-injected tumors. Here, we studied the impact of local treatment with an adenovirus coding for TNFa and IL-2 on systemic antitumor response in animals receiving aPD-1 (anti-programmed cell death protein 1) therapy. Using bilateral murine melanoma models, we tested systemic tumor response to combined therapy with anti-PD-1 and an adenovirus coding for TNFa and IL-2 ("virus"). Virus was given intratumorally (to one of the two tumors only) and aPD-1 monoclonal antibody systemically. We evaluated both tumors' response to treatment, overall survival, metastasis development, and immunological mechanisms involved with response. Consistent tumor control was observed in both injected and non-injected tumors, including complete response in all treated animals receiving aPD-1+ virus therapy. Mechanistically, virus injections enabled potent effector lymphocyte response locally, with systemic effects in non-injected tumors facilitated by aPD-1 treatment. Moreover, adenovirus therapy demonstrated immunological memory formation. Virus therapy was effective in preventing metastasis development. Local treatment with TNFa and IL-2 coding adenovirus enhanced systemic response to aPD-1 therapy, by re-shaping the microenvironment of both injected and non-injected tumors. Therefore, our pre-clinical data support the rationale for a trial utilizing a combination of aPD-1 plus virus for the treatment of human cancer.


Asunto(s)
Infecciones por Adenoviridae , Melanoma , Viroterapia Oncolítica , Adenoviridae/genética , Animales , Inmunoterapia , Interleucina-2 , Melanoma/terapia , Ratones , Microambiente Tumoral
12.
Front Immunol ; 12: 706517, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367166

RESUMEN

Immune checkpoint inhibitors such as anti-PD-1 have revolutionized the field of oncology over the past decade. Nevertheless, the majority of patients do not benefit from them. Virotherapy is a flexible tool that can be used to stimulate and/or recruit different immune populations. T-cell enabling virotherapy could enhance the efficacy of immune checkpoint inhibitors, even in tumors resistant to these inhibitors. The T-cell potentiating virotherapy used here consisted of adenoviruses engineered to express tumor necrosis factor alpha and interleukin-2 in the tumor microenvironment. To study virus efficacy in checkpoint-inhibitor resistant tumors, we developed an anti-PD-1 resistant melanoma model in vivo. In resistant tumors, adding virotherapy to an anti-PD-1 regimen resulted in increased survival (p=0.0009), when compared to anti-PD-1 monotherapy. Some of the animals receiving virotherapy displayed complete responses, which did not occur in the immune checkpoint-inhibitor monotherapy group. When adenoviruses were delivered into resistant tumors, there were signs of increased CD8 T-cell infiltration and activation, which - together with a reduced presence of M2 macrophages and myeloid-derived suppressor cells - could explain those results. T-cell enabling virotherapy appeared as a valuable tool to counter resistance to immune checkpoint inhibitors. The clinical translation of this approach could increase the number of cancer patients benefiting from immunotherapies.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Interleucina-2/inmunología , Melanoma Experimental/patología , Viroterapia Oncolítica/métodos , Factor de Necrosis Tumoral alfa/inmunología , Adenoviridae , Animales , Resistencia a Antineoplásicos , Femenino , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores
13.
Front Immunol ; 12: 674400, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084172

RESUMEN

The notion of developing variants of the classic interleukin 2 (IL-2) cytokine has emerged from the limitations observed with the systemic use of human IL-2 in the clinic: severe adverse events accompanied by low therapeutic response rate in treated patients. Modifications made in the IL-2 receptor-binding structure leads to preferential binding of IL-2 variant cytokine to receptors on effector anti-tumor lymphocytes over T regulatory (TReg) cells. Because of their inherent immunogenicity, oncolytic adenoviruses are useful for expression of immunomodulatory molecules in tumors, for induction of a pro-inflammatory state in the tumor microenvironment. In the present study, we constructed an adenovirus coding for an IL-2 variant (vIL-2) protein, Ad5/3-E2F-d24-vIL2. Functionality of the new virus was tested in vitro, and anti-tumor efficacy and mechanism of action studies were performed in immunocompetent hamsters bearing pancreatic tumors. Ad5/3-E2F-d24-vIL2 treatment elicited efficient anti-tumor response, with 62.5% monotherapy complete response. Moreover, it promoted substantial repression of genes associated with myeloid cells mediated immunosuppression (CD11b, ARG1, CD206). This was seen in conjunction with upregulation of genes associated with tumor-infiltrating lymphocyte (TIL) cytotoxicity (CD3G, SAP, PRF1, GZMM and GZMK). In summary, Ad5/3-E2F-d24-vIL2 demonstrates therapeutic potential by counteracting immunosuppression and in efficiently coordinating lymphocytes mediated anti-tumor response in immunosuppressive tumors. Thus, Ad5/3-E2F-d24-vIL2 is a promising candidate for translation into clinical trials in human immunosuppressive solid tumors.


Asunto(s)
Adenoviridae , Vectores Genéticos , Interleucina-2/inmunología , Neoplasias Pancreáticas/inmunología , Microambiente Tumoral/inmunología , Animales , Cricetinae , Humanos , Interleucina-2/genética , Masculino , Mesocricetus , Virus Oncolíticos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
14.
Cells ; 10(5)2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922052

RESUMEN

Immunotherapy with tumor-infiltrating lymphocytes (TIL) or oncolytic adenoviruses, have shown promising results in cancer treatment, when used as separate therapies. When used in combination, the antitumor effect is synergistically potentiated due oncolytic adenovirus infection and its immune stimulating effects on T cells. Indeed, studies in hamsters have shown a 100% complete response rate when animals were treated with oncolytic adenovirus coding for TNFa and IL-2 (Ad5/3-E2F-D24-hTNFa-IRES-hIL2; TILT-123) and TIL therapy. In humans, one caveat with oncolytic virus therapy is that intratumoral injection has been traditionally preferred over systemic administration, for achieving sufficient virus concentrations in tumors, especially when neutralizing antibodies emerge. We have previously shown that 5/3 chimeric oncolytic adenovirus can bind to human lymphocytes for avoidance of neutralization. In this study, we hypothesized that incubation of oncolytic adenovirus (TILT-123) with TILs prior to systemic injection would allow delivery of virus to tumors. This approach would deliver both components in one self-amplifying product. TILs would help deliver TILT-123, whose replication will recruit more TILs and increase their cytotoxicity. In vitro, TILT-123 was seen binding efficiently to lymphocytes, supporting the idea of dual administration. We show in vivo in different models that virus could be delivered to tumors with TILs as carriers.


Asunto(s)
Adenoviridae/genética , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos/inmunología , Viroterapia Oncolítica/métodos , Neoplasias Ováricas/terapia , Neoplasias Pancreáticas/terapia , Microambiente Tumoral/inmunología , Animales , Cricetinae , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Cancer Gene Ther ; 28(5): 442-454, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32920593

RESUMEN

Oncolytic adenoviruses are promising cancer therapeutic agents. Clinical data have shown adenoviruses' ability to transduce tumors after systemic delivery in human cancer patients, despite antibodies. In the present work, we have focused on the interaction of a chimeric adenovirus Ad5/3 with human lymphocytes and human erythrocytes. Ad5/3 binding with human lymphocytes and erythrocytes was observed to occur in a reversible manner, which allowed viral transduction of tumors, and oncolytic potency of Ad5/3 in vitro and in vivo, with or without neutralizing antibodies. Immunodeficient mice bearing xenograft tumors showed enhanced tumor transduction following systemic administration, when Ad5/3 virus was bound to lymphocytes or erythrocytes (P < 0.05). In conclusion, our findings reveal that chimeric Ad5/3 adenovirus reaches non-injected tumors in the presence of neutralizing antibodies: it occurs through reversible binding to lymphocytes and erythrocytes.


Asunto(s)
Adenocarcinoma del Pulmón/terapia , Adenoviridae/genética , Anticuerpos Neutralizantes/inmunología , Eritrocitos/metabolismo , Neoplasias Pulmonares/terapia , Linfocitos/metabolismo , Viroterapia Oncolítica/métodos , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Adenoviridae/clasificación , Adenoviridae/metabolismo , Animales , Anticuerpos Neutralizantes/metabolismo , Apoptosis , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones SCID , Transducción Genética , Células Tumorales Cultivadas , Replicación Viral , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Hum Gene Ther ; 32(3-4): 192-202, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33050725

RESUMEN

Dendritic cell (DC)-based vaccines have shown some degree of success for the treatment of prostate cancer (PC). However, the highly immunosuppressive tumor microenvironment leads to DC dysfunction, which has limited the effectiveness of these vaccines. We hypothesized that use of a fully serotype 3 oncolytic adenovirus (Ad3-hTERT-CMV-hCD40L; TILT-234) could stimulate DCs in the prostate tumor microenvironment by expressing CD40L. Activated DCs would then activate cytotoxic T cells against the tumor, resulting in therapeutic immune responses. Oncolytic cell killing due to cancer cell-specific virus replication adds to antitumor effects but also enhances the immunological effect by releasing tumor epitopes for sampling by DC, in the presence of danger signals. In this study, we evaluated the companion effect of Ad3-hTERT-CMV-hCD40L and DC-therapy in a humanized mouse model and PC histocultures. Treatment with Ad3-hTERT-CMV-hCD40L and DC resulted in enhanced antitumor responses in vivo. Treatment of established histocultures with Ad3-hTERT-CMV-hCD40L induced DC maturation and notable increase in proinflammatory cytokines. In conclusion, Ad3-hTERT-CMV-hCD40L is able to modulate an immunosuppressive prostate tumor microenvironment and improve the effectiveness of DC vaccination in PC models and patient histocultures, setting the stage for clinical translation.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias de la Próstata , Adenoviridae/genética , Animales , Ligando de CD40/genética , Línea Celular Tumoral , Células Dendríticas , Humanos , Masculino , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Linfocitos T Citotóxicos , Microambiente Tumoral
17.
Oncoimmunology ; 9(1): 1761229, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32923123

RESUMEN

Checkpoint inhibitors have revolutionized cancer therapy and validated immunotherapy as an approach. Unfortunately, responses are seen in a minority of patients. Our objective is to use engineered adenoviruses designed to increase lymphocyte trafficking and cytokine production at the tumor, to assess if they increase the response rate to checkpoint inhibition, as these features have been regarded as predictive for the responses. When Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (an oncolytic adenovirus coding for TNFa and IL-2, also known as TILT-123) and checkpoint inhibitors were used together in fresh urological tumor histocultures, a significant shift toward immune activity (not only tumor necrosis alpha and interleukin-2 but also interferon gamma and granzyme B) and increased T-cell trafficking signals (CXCL10) was observed. In vivo, our viruses enabled an anti-PD-L1 (a checkpoint inhibitor) delivering complete responses in all the treated animals (hazard ratios versus anti-PD-L1 alone 0.057 [0.007; 0.451] or virotherapy alone 0.067 [0.011; 0.415]). To conclude, when an engineered oncolytic adenovirus was utilized to modify the tumor microenvironment towards what meta-analyses have pointed as predictive markers for checkpoint inhibitory therapy, the response to them increased synergistically. Of note, key findings were confirmed in fresh patient-derived tumor explants.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae/genética , Animales , Antígeno B7-H1/genética , Humanos , Virus Oncolíticos/genética , Microambiente Tumoral
18.
Oecologia ; 193(4): 1021-1026, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32766935

RESUMEN

Migration has evolved to tackle temporal changes in availability of resources. Climate change has been shown to affect the migration dates of species, which raises the question of whether the variation in the timing of migration is climate or resource dependent? The relative importance of temperature and availability of food as drivers of migration behaviour during both spring and autumn seasons has been poorly studied. Here, we investigated these patterns in frugivorous and granivorous birds (hereafter frugivorous) that are assumed to postpone their autumn migration when there is plenty of food available, which may also advance upcoming spring migration. On the other hand, especially spring migration dates have been negatively connected with increasing temperatures. We tested whether the autumn and spring migration dates of eleven common frugivorous birds depended on the crop size of trees or ambient temperatures using 29 years of data in Finland. The increased crop sizes of trees delayed autumn migration dates; whereas, autumn temperature did not show a significant connection. We also observed a temporal trend towards later departure. Increasing temperature and crop sizes advanced spring arrival dates. Our results support the hypothesis that the timing of autumn migration in the frugivorous birds depends on the availability of food and is weakly connected with the variation in temperature. Importantly, crop size can have carry-over effects and affect the timing of spring arrival possibly because birds have overwintered closer to the breeding grounds after an abundant crop year.


Asunto(s)
Migración Animal , Árboles , Animales , Aves , Finlandia , Estaciones del Año , Temperatura
19.
Mol Ther Oncolytics ; 17: 47-60, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32322662

RESUMEN

Despite some promising results, the majority of patients do not benefit from T cell therapies, as tumors prevent T cells from entering the tumor, shut down their activity, or downregulate key antigens. Due to their nature and mechanism of action, oncolytic viruses have features that can help overcome many of the barriers currently facing T cell therapies of solid tumors. This study aims to understand how four different oncolytic viruses (adenovirus, vaccinia virus, herpes simplex virus, and reovirus) perform in that task. For that purpose, an immunocompetent in vivo tumor model featuring adoptive tumor-infiltrating lymphocyte (TIL) therapy was used. Tumor growth control (p < 0.001) and survival analyses suggest that adenovirus was most effective in enabling T cell therapy. The complete response rate was 62% for TILs + adenovirus versus 17.5% for TILs + PBS. Of note, TIL biodistribution did not explain efficacy differences between viruses. Instead, immunostimulatory shifts in the tumor microenvironment mirrored efficacy results. Overall, the use of oncolytic viruses can improve the utility of T cell therapies, and additional virus engineering by arming with transgenes can provide further antitumor effects. This phenomenon was seen when an unarmed oncolytic adenovirus was compared to Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (TILT-123). A clinical trial is ongoing, where patients receiving TIL treatment also receive TILT-123 (ClinicalTrials.gov: NCT04217473).

20.
Cells ; 9(4)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32225009

RESUMEN

In order to break tumor resistance towards traditional treatments, we investigate the response of tumor and immune cells to a novel, cytokine-armed oncolytic adenovirus: Ad5/3-d24-E2F-hTNFa-IRES-hIL2 (also known as TILT-123 and OAd.TNFa-IL2). There are several pattern recognition receptors (PRR) that might mediate adenovirus-infection recognition. However, the role and specific effects of each PRR on the tumor microenvironment and treatment outcome remain unclear. Hence, the aim of this study was to investigate the effects of OAd.TNFa-IL2 infection on PRR-mediated danger- and pathogen-associated molecular pattern (DAMP and PAMP, respectively) signaling. In addition, we wanted to see which PRRs mediate an antitumor response and are therefore relevant for optimizing this virotherapy. We determined that OAd.TNFa-IL2 induced DAMP and PAMP release and consequent tumor microenvironment modulation. We show that the AIM2 inflammasome is activated during OAd.TNFa-IL2 virotherapy, thus creating an immunostimulatory antitumor microenvironment.


Asunto(s)
Adenoviridae/metabolismo , Alarminas/metabolismo , Interleucina-2/metabolismo , Virus Oncolíticos/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/genética , Técnicas de Inactivación de Genes , Inflamación/patología , Leucocitos/metabolismo , Mesocricetus , FN-kappa B/metabolismo , Viroterapia Oncolítica , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Receptor Toll-Like 9/metabolismo , Transcriptoma/genética , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA