Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Biomed Eng Lett ; 14(5): 1113-1124, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39220034

RESUMEN

The purpose of this study was to investigate the potential of discoidal polymeric particles (DPPs) coated with macrophage membranes as a novel drug delivery system. The study aimed to determine whether these coated particles could reduce phagocytosis, and target specific organs, thereby enhancing drug delivery efficacy. In this study, discoidal polymeric particles (DPPs) were synthesized by a top-down fabrication method serving as the core drug delivery platform. The method involved the fusion of macrophage cell membrane vesicles with DPPs, resulting in macrophage membrane coated DPPs. This process aimed to translocate membrane proteins from macrophages onto the DPPs, rendering them structurally and functionally like host cells. The results of this study showed that macrophage membrane coated DPPs exhibited a threefold reduction in phagocytosis compared to bare DPPs. This reduction in phagocytosis indicated the potential of these coated DPPs to evade immune clearance. Time-lapse microscopy further illustrated the distinct interactions of macrophage membrane coated DPPs with immune cells. Biodistribution studies revealed that these coated particles displayed preferential accumulation in the lungs at early time points, followed by sustained accumulation in the liver. In conclusion, this study demonstrated that macrophage membrane coated DPPs represent a unique and promising strategy for drug delivery. These particles can mimic cell surfaces, reduce phagocytosis, and target specific organs. This opens exciting avenues for improving drug delivery efficacy in diverse therapeutic contexts. These findings advance our understanding of nanomedicine's potential in personalized therapies and targeted drug delivery strategies. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-024-00396-x.

2.
iScience ; 27(7): 110137, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39006481

RESUMEN

Pituitary adenoma-induced excess endocrine growth hormone (GH) secretion can lead to breast cancer development and metastasis. Herein, we used an acromegaly mouse model to investigate the role of excess endocrine GH on triple-negative breast cancer (TNBC) growth and metastasis. Additionally, we aimed to elucidate the molecular mechanism of transcription factor 20 (TCF20)/nuclear factor erythroid 2-related factor 2 (NRF2) signaling-mediated aggressiveness and metastasis of TNBC. Excess endocrine GH induced TCF20 activates the transcription of NRF2 and NRF2-target genes to facilitate TNBC metastasis. Inhibition of GH receptor (GHR) and TCF20 activity using the GHR antagonist or small-interfering RNA-induced gene knockdown resulted in reduced tumor volume and metastasis, suggesting that excess endocrine GH stimulates TCF20/NRF2 pathways in TNBC and promotes metastasis to the lung. GHR inhibitors present an effective therapeutic strategy to prevent TNBC cell growth and metastasis. Our findings revealed functional and mechanistic roles of the GH-TCF20-NRF2 signaling axis in TBNC progression.

4.
Environ Geochem Health ; 46(7): 216, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38941030

RESUMEN

Iron phosphate-based coating and iron silicate-based coating were used to inhibit the oxidation of sulfide minerals in rainy and submerged environments. The inhibiting effectiveness of coating agents on the oxidation of iron sulfide minerals was investigated using pyrite and rock samples resulting from acid drainage. The film formed with both surface-coating agents was identified by pyrite surface analysis. It was also confirmed that the formation of coatings varies depending on the crystallographic orientation. The inhibitory effects under rainy and submerged conditions were investigated using column experiments. Submerged conditions accelerated deterioration compared to that under rainy conditions. Iron phosphate coating had a significantly better oxidation-inhibitory effect (84.86-98.70%) than iron silicate coating (56.80-92.36%), and at a concentration of 300 mM, H+ elution was inhibited by more than 90% throughout the experiment. Furthermore, methods for effective film formation were investigated in terms of producing Fe3+; (1) application of coating agents mixed with oxidant (H2O2), (2) application of coating agent after the use of the oxidant. In a rainy environment, applying iron phosphate-based coating using the sequential method showed oxidation inhibition effects for cycles 1-9, whereas applying the mixed material showed effects for cycles 9-13. The use of a surface-coating agent after applying an oxidant did not inhibit oxidation. The surface coating agent and the oxidizing agent should be applied as a mixture to form a film.


Asunto(s)
Hierro , Oxidación-Reducción , Fosfatos , Silicatos , Silicatos/química , Hierro/química , Fosfatos/química , Lluvia Ácida , Sulfuros/química , Peróxido de Hidrógeno/química , Compuestos Férricos/química
5.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892434

RESUMEN

Many different types of nanoparticles have been suggested for tumor-targeted theranosis. However, most systems were prepared through a series of complicated processes and could not even overcome the blood-immune barriers. For the accurate diagnosis and effective treatment of cancers, herein we suggested the lipid micellar structure capturing quantum dot (QD) for cancer theranosis. The QD/lipid micelles (QDMs) were prepared using a simple self-assembly procedure and then conjugated with anti-epidermal growth factor receptor (EGFR) antibodies for tumor targeting. As a therapeutic agent, Bcl2 siRNA-cholesterol conjugates were loaded on the surface of QDMs. The EGFR-directed QDMs containing Bcl2 siRNA, so-called immuno-QDM/siBcl2 (iQDM/siBcl2), exhibited the more effective delivery of QDs and siBcl2 to target human colorectal cancer cells in cultures as well as in mouse xenografts. The effective in vivo targeting of iQDM/siBcl2 resulted in a more enhanced therapeutic efficacy of siBcl2 to the target cancer in mice. Based on the results, anti-EGFR QDM capturing therapeutic siRNA could be suggested as an alternative modality for tumor-targeted theranosis.


Asunto(s)
Receptores ErbB , Proteínas Proto-Oncogénicas c-bcl-2 , Puntos Cuánticos , ARN Interferente Pequeño , Puntos Cuánticos/química , Animales , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Humanos , ARN Interferente Pequeño/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Ratones , Línea Celular Tumoral , Nanopartículas/química , Lípidos/química , Nanomedicina Teranóstica/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Micelas
6.
Front Endocrinol (Lausanne) ; 15: 1362428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841298

RESUMEN

Background: Osteoporosis (OP) and cardiovascular disease (CVD) are major global public health issues, especially exacerbated by the challenges of an aging population. As these problems intensify, the associated burden on global health is expected to increase significantly. Despite extensive epidemiological investigations into the potential association between OP and CVD, establishing a clear causal relationship remains elusive. Methods: Instrumental variables were selected from summary statistics of the IEU GWAS database. Five different components of BMD (heel BMD, LS BMD, FA BMD, FN BMD, and TB BMD) were used as OP phenotypes. CHD, MI, and stroke were selected to represent CVD. Multiple analysis methods were used to evaluate the causal relationship between CVD and OP comprehensively. In addition, sensitivity analyses(Cochran's Q test, MR-Egger intercept test, and "leave one out" analysis) were performed to verify the reliability of the results. Results: The MR showed a significant causal relationship between CHD on heel BMD and TB BMD; in the reverse analysis, there was no evidence that OP has a significant causal effect on CVD. The reliability of the results was confirmed through sensitivity analysis. Conclusion: The study results revealed that CHD was causally associated with Heel BMD and TB BMD, while in the reverse MR analysis, the causal relationship between OP and CVD was not supported. This result posits CHD as a potential etiological factor for OP and prompts that routine bone density assessment at traditional sites (forearm, femoral neck, lumbar spine) using DAX may inadequately discern underlying osteoporosis issues in CHD patients. The recommendation is to synergistically incorporate heel ultrasound or DAX for total body bone density examinations, ensuring clinical diagnostics are both precise and reliable. Moreover, these findings provide valuable insights for public health, contributing to the development of pertinent prevention and treatment strategies.


Asunto(s)
Densidad Ósea , Enfermedad Coronaria , Análisis de la Aleatorización Mendeliana , Osteoporosis , Humanos , Osteoporosis/genética , Osteoporosis/epidemiología , Enfermedad Coronaria/genética , Enfermedad Coronaria/epidemiología , Femenino , Estudio de Asociación del Genoma Completo , Masculino , Persona de Mediana Edad
7.
Nat Commun ; 15(1): 4002, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734692

RESUMEN

Precise genome editing is crucial for establishing isogenic human disease models and ex vivo stem cell therapy from the patient-derived hPSCs. Unlike Cas9-mediated knock-in, cytosine base editor and prime editor achieve the desirable gene correction without inducing DNA double strand breaks. However, hPSCs possess highly active DNA repair pathways and are particularly susceptible to p53-dependent cell death. These unique characteristics impede the efficiency of gene editing in hPSCs. Here, we demonstrate that dual inhibition of p53-mediated cell death and distinct activation of the DNA damage repair system upon DNA damage by cytosine base editor or prime editor additively enhanced editing efficiency in hPSCs. The BE4stem system comprised of p53DD, a dominant negative p53, and three UNG inhibitor, engineered to specifically diminish base excision repair, improves cytosine base editor efficiency in hPSCs. Addition of dominant negative MLH1 to inhibit mismatch repair activity and p53DD in the conventional prime editor system also significantly enhances prime editor efficiency in hPSCs. Thus, combined inhibition of the distinct cellular cascades engaged in hPSCs upon gene editing could significantly enhance precise genome editing in these cells.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Reparación del ADN , Edición Génica , Proteína p53 Supresora de Tumor , Edición Génica/métodos , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Citosina/metabolismo
8.
Int J Biol Macromol ; 271(Pt 1): 132564, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782324

RESUMEN

Recently, the incidence of Achilles tendon ruptures (ATRs) has become more common, and repair surgery using a bioabsorbable suture is generally preferred, particularly in the case of healthy patients. Sutures composed of poly(lactic-co-glycolic acid) (PLGA) are commonly used in ATR surgeries. Nevertheless, owing to the inherent limitations of PLGA, novel bioabsorbable sutures that can accelerate Achilles tendon healing are sought. Recently, several studies have demonstrated the beneficial effects of atelocollagen on tendon healing. In this study, poly(3,4-dihydroxy-L-phenylalanine) (pDOPA), a hydrophilic biomimetic material, was used to modify the hydrophobic surface of a PLGA suture (Vicryl, VC) for the stable coating of atelocollagen on its surface. The main objective was to fabricate an atelocollagen-coated VC suture and evaluate its performance in the healing of Achilles tendon using a rat model of open repair for ATR. Structural analyses of the surface-modified suture indicated that the collagen was successfully coated on the VC/pDOPA suture. Postoperative in vivo biomechanical analysis, histological evaluation, ultrastructural/morphological analyses, and western blotting confirmed that the tendons in the VC/pDOPA/Col group exhibit superior healing than those in the VC and VC/pDOPA groups after 1 and 6 weeks following the surgery. The this study suggests that atelocollagen-coated PLGA/pDOPA sutures are preferable for future medical applications, especially in the repair of ATR.


Asunto(s)
Tendón Calcáneo , Colágeno , Suturas , Cicatrización de Heridas , Animales , Tendón Calcáneo/cirugía , Tendón Calcáneo/efectos de los fármacos , Tendón Calcáneo/lesiones , Ratas , Cicatrización de Heridas/efectos de los fármacos , Colágeno/química , Masculino , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Implantes Absorbibles , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Regeneración/efectos de los fármacos , Traumatismos de los Tendones/cirugía
9.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338667

RESUMEN

mRNA vaccines have emerged as a pivotal tool in combating COVID-19, offering an advanced approach to immunization. A key challenge with these vaccines is their need for extremely-low-temperature storage, which affects their stability and shelf life. Our research addresses this issue by enhancing the stability of mRNA vaccines through a novel cationic lipid, O,O'-dimyristyl-N-lysyl aspartate (DMKD). DMKD effectively binds with mRNA, improving vaccine stability. We also integrated phosphatidylserine (PS) into the formulation to boost immune response by promoting the uptake of these nanoparticles by immune cells. Our findings reveal that DMKD-PS nanoparticles maintain structural integrity under long-term refrigeration and effectively protect mRNA. When tested, these nanoparticles containing green fluorescent protein (GFP) mRNA outperformed other commercial lipid nanoparticles in protein expression, both in immune cells (RAW 264.7 mouse macrophage) and non-immune cells (CT26 mouse colorectal carcinoma cells). Importantly, in vivo studies show that DMKD-PS nanoparticles are safely eliminated from the body within 48 h. The results suggest that DMKD-PS nanoparticles present a promising alternative for mRNA vaccine delivery, enhancing both the stability and effectiveness of these vaccines.


Asunto(s)
Liposomas , Nanopartículas , Vacunas , Animales , Ratones , ARN Mensajero/química , Vacunas de ARNm , Transfección , Células Presentadoras de Antígenos , Nanopartículas/química
11.
iScience ; 27(1): 108747, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38222110

RESUMEN

Massively parallel reporter assay measures transcriptional activities of various cis-regulatory modules (CRMs) in a single experiment. We developed a thermodynamic computational model framework that calculates quantitative levels of gene expression directly from regulatory DNA sequences. Using the framework, we investigated the molecular mechanisms of cis-regulatory mutations of a synthetic enhancer that cause abnormal gene expression. We found that, in a human cell line, competitive binding between family transcription factors (TFs) with slightly different binding preferences significantly increases the accuracy of recapitulating the transcriptional effects of thousands of single- or multi-mutations. We also discovered that even if various harmful mutations occurred in an activator binding site, CRM could stably maintain or even increase gene expression through a certain form of competitive binding between family TFs. These findings enhance understanding the effect of SNPs and indels on CRMs and would help building robust custom-designed CRMs for biologics production and gene therapy.

12.
Orthop Traumatol Surg Res ; 110(2): 103770, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37979671

RESUMEN

INTRODUCTION: Indirect reduction of minimally invasive plate osteosynthesis (MIPO) can often result in delayed union in tibia fractures. This study evaluated several factors in MIPO in relation to bone union. HYPOTHESIS: We hypothesized that the fracture gap, plate - tibia distance, or working length would have a substantial effect on the tibia union rate. MATERIALS AND METHODS: Forty-one patients with simple diaphyseal or distal metaphyseal tibia fractures who underwent internal fixation surgery using the MIPO technique were divided into two groups: patients with delayed union and patients without delayed union. Non-actionable factors involving AO/OTA classification, fibula fracture and actionable factors including postoperative fracture gap, plate - tibia distance, working length in relation to parameters of bone union were compared between the two groups. Also cumulative rates of bone union and risk factors of delayed union according to variables of interest were investigated. RESULTS: AO/OTA classification, site of fibula fracture, postoperative fracture gap, working length, and bone union rate of the two groups significantly differed (p<0.05). The cumulative rate of bone union during 1-year follow-up according to 43A tibia fracture, distal fibula fracture, fracture gap, and working length significantly differed between the two groups (p<0.05). By univariate Cox proportional hazards model, 43A tibia fracture, distal fibula fracture, facture gap, and short working length were risk factors for delayed union (p<0.05). DISCUSSION: Non-actionable factors involving AO/OTA classification, distal fibula fracture and actionable factors including postoperative fracture gap, working length were significant factors affecting bone union after MIPO. The present study indicated that small fracture gap and long working length during MIPO might facilitate bone healing in tibia fracture. LEVEL OF EVIDENCE: IV; single-center retrospective cohort study.


Asunto(s)
Fracturas de Tobillo , Fracturas de Peroné , Fracturas Múltiples , Fracturas de la Tibia , Humanos , Tibia/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Curación de Fractura , Fracturas de la Tibia/diagnóstico por imagen , Fracturas de la Tibia/cirugía , Fracturas de la Tibia/etiología , Fijación Interna de Fracturas/métodos , Placas Óseas , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos
13.
Artículo en Inglés | MEDLINE | ID: mdl-37956351

RESUMEN

The current study used secondary data from the 17th Korea Youth Risk Behavior Survey conducted in 2021 to identify risk factors influencing the frequency with which adolescents in Korea experience generalized anxiety. Participants were 54,848 adolescents. Risk factors for generalized anxiety were analyzed using a zero-inflated negative binomial regression model. Of participants, 23.7% reported no generalized anxiety experiences. Risk factors identified in the count model were being female and having low household economic status as well as perceived stress, sadness, subjective sleep insufficiency, and loneliness. In the logit model, being female, in middle school, having middle and low household economic status, not living with family, having perceived stress, sadness, suicidal ideation, subjective sleep insufficiency, loneliness, and body image distortion were significant predictors of future anxiety among participants without anxiety. These results may be useful for planning nursing interventions to improve and prevent future health problems in adolescents. [Journal of Psychosocial Nursing and Mental Health Services, xx(x), xx-xx.].

15.
Sci Rep ; 13(1): 17116, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816744

RESUMEN

Multi-segmental lumbar degenerative disease, including intersegmental disc degeneration, is found in clinical practice. Controversy still exists regarding the treatment for cross-segment degeneration. Oblique Lateral Interbody Fusion (OLIF) with several internal fixations was used to treat cross-segment lumbar degenerative disease. A whole lumbar spine model was extracted from CT images of the whole lumbar spine of patients with lumbar degeneration. The L2-3 and L4-5 intervertebral spaces were fused with OLIF using modeling software, the Pedicle screws were performed on L2-3 and L4-5, and different internal fixations were performed on L3-4 in Finite Element (FE) software. Among the six 10 Nm moments of different directions, the L3-4 no surgery (NS) group had the relatively largest Range of Motion (ROM) in the whole lumbar spine, while the L2-5 Long segmental fixation (LSF)group had the smallest ROM and the other groups had similar ROM. The ROM in the L1-2 and L5-S1 was relatively close in the six group models, and the articular cartilage stress and disc stress on the L1-2 and L5-S1 were relatively close. In contrast, the L3-4 ROM differed relatively greatly, with the LSF ROM the smallest and the NS ROM the largest, and the L3-4 Coflex (Coflex) group more active than the L3-4 Bacfuse (Bacfuse) group and the L3-4 translaminar facet screw fixation (TFSF) group. The stress on the articular cartilage and disc at L3-4 was relatively greater in the NS disc and articular cartilage, and greater in the Coflex group than in the Bacfuse and TFSF groups, with the greatest stress on the internal fixation in the TFSF group, followed by the Coflex group, and relatively similar stress in the Bacfuse, LSF, and NS groups. In the TFSF group, the stress on the internal fixation was greater than the yield strength among different directional moments of 10 Nm, which means it is unsuitable to be an internal fixation. The LSF group had the greatest overall ROM, which may lead to postoperative low back discomfort. The NS group has the greatest overall ROM, but its increased stress on the L3-4 disc and articular cartilage may lead to accelerated degeneration of the L3-4 disc and articular cartilage. The Coflex and Bacfuse groups had a reduced L3-4 ROM but a greater stress on disc compared to the LSF group, which may lead to disc degeneration in the long term. However, their stress on the articular cartilage was relatively low. Coflex and Bacfuse can still be considered better surgical options.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Tornillos Pediculares , Fusión Vertebral , Humanos , Degeneración del Disco Intervertebral/diagnóstico por imagen , Degeneración del Disco Intervertebral/cirugía , Análisis de Elementos Finitos , Fusión Vertebral/métodos , Rango del Movimiento Articular , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Fenómenos Biomecánicos
16.
Orthop J Sports Med ; 11(10): 23259671231200933, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37868218

RESUMEN

Background: There is growing interest in nonoperative treatment for the management of Achilles tendon ruptures (ATRs). However, nonoperative treatment is limited by the risk of tendon reruptures and low satisfaction rates. Recently, atelocollagen injections have been reported to have beneficial effects on tendon healing. Purpose: To evaluate the beneficial effects of injected atelocollagen on Achilles tendon healing and investigate the mechanism of atelocollagen on tendon healing. Study Design: Controlled laboratory study. Methods: Percutaneous tenotomy of the right Achilles tendon in 66 rats was performed. The animals were equally divided into the noninjection group (NG) and the collagen injection group (CG). At 1, 3, and 6 weeks, the Achilles functional index, cross-sectional area, load to failure, stiffness, stress, and the modified Bonar score were assessed. Transmission electron microscopy, western blotting, and immunohistochemistry were also performed. Results: The Achilles functional index (-6.8 vs -43.0, respectively; P = .040), load to failure (42.1 vs 27.0 N, respectively; P = .049), and stiffness (18.8 vs 10.3 N/mm, respectively; P = .049) were higher in the CG than those in the NG at 3 weeks. There were no significant differences in histological scores between the 2 groups. Transmission electron microscopy analysis showed that the mean diameter of collagen fibrils in the CG was greater than that in the NG at 3 weeks (117.2 vs 72.6 nm, respectively; P < .001) and 6 weeks (202.1 vs 144.0 nm, respectively; P < .001). Western blot analysis showed that the expression of collagen type I in the CG was higher than that in the NG at 1 week (P = .005) and 6 weeks (P = .001). Conclusion: An atelocollagen injection had beneficial effects on the healing of nonoperatively treated Achilles tendon injuries. The Achilles tendon of CG rats exhibited better functional, biomechanical, and morphological outcomes compared with NG rats. The molecular data indicated that the mechanism of atelocollagen injections may be associated with an increased amount of collagen type I. Clinical Relevance: An atelocollagen injection might be a good adjuvant option for the nonoperative treatment of ATRs.

17.
BMC Musculoskelet Disord ; 24(1): 722, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697343

RESUMEN

BACKGROUND: There are some cases of Klippel-Feil syndrome with spinal cord injury in clinical work. However, there is no literature report on Brown-Sequard syndrome after trauma. We report a case of Brown-Sequard syndrome following minor trauma in a patient with KFS type III. Her Brown-Sequard syndrome is caused by Klippel-Feil syndrome. CASE PRESENTATION: We found a 38-year-old female patient with KFS in our clinical work. She was unconscious on the spot following a minor traumatic episode. After treatment, her whole body was numb and limb activity was limited. Half an hour later, she felt numb and weak in the right limb and weak in the left limb. She had no previous hypertension, diabetes, or coronary heart disease. After one-month treatment of medication, hyperbaric oxygen, rehabilitation, and acupuncture in our hospital, her muscle strength partially recovered, but the treatment effect was still not satisfactory. Then, she underwent surgical treatment and postoperative comprehensive treatment, and rehabilitation training. She was able to take care of herself with assistance, and her condition improved from grade B to grade D according to the ASIA (ASIA Impairment Scale) classification. CONCLUSION: KFS, also known as short neck deformity, is a kind of congenital deformity characterized by impaired formation and faulty segmentation of the cervical spine, often associated with abnormalities of other organs. The cervical deformity in patients with KFS can alter the overall mechanical activity of the spine, as well as the compensatory properties of the spine for decelerating and rotatory forces, thus increasing the chance of spinal cord injury (SCI) following trauma. Many mechanisms can make patients more susceptible to injury. Increased range of motion of the segment adjacent to the fused vertebral body may lead to slippage of the adjacent vertebral body and altered disc stress, as well as cervical instability. SCI can result in complete or incomplete impairment of motor, sensory and autonomic nervous functions below the level of lesion. This woman presented with symptoms of BSS, a rare neurological disorder with incomplete SCI. Judging from the woman's symptoms, we concluded that previously she had KFS, which resulted in SCI without fracture and dislocation following minor trauma, with partial BSS. After the comprehensive treatment of surgery, hyperbaric oxygen, rehabilitation therapy, and neurotrophic drugs, two years later, we found her symptoms significantly improved, with ASIA Impairment Scale from grade B to grade D, and her ability to perform activities of daily living with aids.


Asunto(s)
Síndrome de Brown-Séquard , Síndrome de Klippel-Feil , Traumatismos de la Médula Espinal , Humanos , Femenino , Adulto , Síndrome de Klippel-Feil/complicaciones , Síndrome de Brown-Séquard/diagnóstico por imagen , Síndrome de Brown-Séquard/etiología , Síndrome de Brown-Séquard/cirugía , Actividades Cotidianas , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía
18.
Sci Rep ; 13(1): 14070, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640762

RESUMEN

Organic light-emitting diode (OLED) microdisplays have received great attention owing to their excellent performance for augmented reality/virtual reality devices applications. However, high pixel density of OLED microdisplay causes electrical crosstalk, resulting in color distortion. This study investigated the current crosstalk ratio and changes in the color gamut caused by electrical crosstalk between sub-pixels in high-resolution full-color OLED microdisplays. A pixel structure of 3147 pixels per inch (PPI) with four sub-pixels and a single-stack white OLED with red, green, and blue color filters were used for the electrical crosstalk simulation. The results showed that the sheet resistance of the top and bottom electrodes of OLEDs rarely affected the electrical crosstalk. However, the current crosstalk ratio increased dramatically and the color gamut decreased as the sheet resistance of the common organic layer decreased. Furthermore, the color gamut of the OLED microdisplay decreased as the pixel density of the panel increased from 200 to 5000 PPI. Additionally, we fabricated a sub-pixel circuit to measure the electrical crosstalk current using a 3147 PPI scale multi-finger-type pixel structure and compared it with the simulation result.

19.
Materials (Basel) ; 16(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37444874

RESUMEN

Carbon aerogel is a promising material in various applications, such as water treatment, insulators, catalysts, and sensors, due to its porosity, low density, conductivity, and good chemical stability. In this study, an inexpensive carbon aerogel was prepared through lyophilization and post-pyrolysis using waste paper. However, carbon aerogel, in the form of short belts, is randomly entangled without a crosslinking agent and has weak mechanical properties, thus limiting its applications, which would otherwise be various. In this paper, a novel strategy is proposed to fabricate a PDMS-coated carbon aerogel (Aerogel@PDMS). Benefiting from microwave heating, precise PDMS coating onto the carbon frame was able to be carried out in a short amount of time. PDMS coating firmly tied the carbon microstructure, maintaining a unique aerogel property without blocking its porous structure. FE-SEM, RAMAN, XPS, and FT-IR were all used to confirm the surface change in PDMS coating. Compressible stability and water contact angle measurement showed that Aerogel@PDMS is a perspective organic solvent absorbent due to its good resilience and its hydrophobicity, and, as a result, its organic solvent absorption capacity and repeated absorption were evaluated, ultimately suggesting a promising material in oil clean-up and pollution remediation in water. Based on our experimental results, we identified elastic carbon aerogels provided by a novel coating technology. In the future, then, the developed carbon/PDMS composite can be examined as a promising option for various applications, such as environmental sensors, virus sensors, and wearable sensors.

20.
Traffic Inj Prev ; 24(7): 618-624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37436170

RESUMEN

OBJECTIVE: Chest injuries that occur in motor vehicle crashes (MVCs) include rib fractures, pneumothorax, hemothorax, and hemothorax depending on the injury mechanism. Many risk factors are associated with serious chest injuries from MVCs. The Korean In-Depth Accident Study database was analyzed to identify risk factors associated with motor vehicle occupants' serious chest injury. METHODS: Among 3,697 patients who visited the emergency room in regional emergency medical centers after MVCs between 2011 and 2018, we analyzed data from 1,226 patients with chest injuries. Vehicle damage was assessed using the Collision Deformation Classification (CDC) code and images of the damaged vehicle, and trauma scores were used to determine injury severity. Serious chest injury was defined as an Abbreviated Injury Scale (AIS) score for the chest code was more than 3. The patients were divided into two groups: serious chest injury patients with MAIS ≥ 3 and those with non-serious chest injury with MAIS < 3. A predictive model to analyze the factors affecting the presence of serious chest injury in the occupants on MVCs was constructed by a logistic regression analysis. RESULTS: Among the 1,226 patients with chest injuries, 484 (39.5%) had serious chest injuries. Patients in the serious group were older than those in the non-serious group (p=.001). In analyses based on vehicle type, the proportion of light truck occupants was higher in the serious group than in the non-serious group (p=.026). The rate of seatbelt use was lower in the serious group than in the non-serious group (p=.008). The median crush extent (seventh column of the CDC code) was higher in the serious group than in the non-serious group (p<.001). Emergency room data showed that the rates of intensive care unit (ICU) admission and death were higher among patients with serious injuries (p<.001). Similarly, the general ward/ICU admission data showed that the transfer and death rates were higher in patients with serious injuries (p<.001). The median ISS was higher in the serious group than in the non-serious group (p<.001). A predictive model was derived based on sex, age, vehicle type, seating row, belt status, collision type, and crush extent. This predictive model had an explanatory power of 67.2% for serious chest injuries. The model was estimated for external validation using the confusion matrix by applying the predictive model to the 2019 and 2020 data of the same structure as the data at the time of model development in the KIDAS database. CONCLUSIONS: Although this study had a major limitation in that the explanatory power of the predictive model was weak due to the small number of samples and many exclusion conditions, it was meaningful in that it suggested a model that could predict serious chest injuries in motor vehicle occupants (MVOs) based on actual accident investigation data in Korea. Future studies should yield more meaningful results, for example, if the chest compression depth value is derived through the reconstruction of MVCs using accurate collision speed values, and better models can be developed to predict the relationship between these values and the occurrence of serious chest injury.


Asunto(s)
Lesiones Accidentales , Traumatismos Torácicos , Heridas y Lesiones , Humanos , Accidentes de Tránsito , Modelos Logísticos , Hemotórax/complicaciones , Traumatismos Torácicos/epidemiología , Traumatismos Torácicos/etiología , Vehículos a Motor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...