Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
J Biol Chem ; 299(9): 105109, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37517695

RESUMEN

G-protein metallochaperones are essential for the proper maturation of numerous metalloenzymes. The G-protein chaperone MMAA in humans (MeaB in bacteria) uses GTP hydrolysis to facilitate the delivery of adenosylcobalamin (AdoCbl) to AdoCbl-dependent methylmalonyl-CoA mutase, an essential metabolic enzyme. This G-protein chaperone also facilitates the removal of damaged cobalamin (Cbl) for repair. Although most chaperones are standalone proteins, isobutyryl-CoA mutase fused (IcmF) has a G-protein domain covalently attached to its target mutase. We previously showed that dimeric MeaB undergoes a 180° rotation to reach a state capable of GTP hydrolysis (an active G-protein state), in which so-called switch III residues of one protomer contact the G-nucleotide of the other protomer. However, it was unclear whether other G-protein chaperones also adopted this conformation. Here, we show that the G-protein domain in a fused system forms a similar active conformation, requiring IcmF oligomerization. IcmF oligomerizes both upon Cbl damage and in the presence of the nonhydrolyzable GTP analog, guanosine-5'-[(ß,γ)-methyleno]triphosphate, forming supramolecular complexes observable by mass photometry and EM. Cryo-EM structural analysis reveals that the second protomer of the G-protein intermolecular dimer props open the mutase active site using residues of switch III as a wedge, allowing for AdoCbl insertion or damaged Cbl removal. With the series of structural snapshots now available, we now describe here the molecular basis of G-protein-assisted AdoCbl-dependent mutase maturation, explaining how GTP binding prepares a mutase for cofactor delivery and how GTP hydrolysis allows the mutase to capture the cofactor.


Asunto(s)
Cobamidas , Metilmalonil-CoA Mutasa , Modelos Moleculares , Chaperonas Moleculares , Cobamidas/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Isomerasas/química , Isomerasas/metabolismo , Metilmalonil-CoA Mutasa/química , Metilmalonil-CoA Mutasa/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Cupriavidus/química , Cupriavidus/enzimología , Estructura Cuaternaria de Proteína , Dominio Catalítico , Coenzimas/metabolismo
3.
J Am Chem Soc ; 143(1): 176-183, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33353307

RESUMEN

The class Ia ribonucleotide reductase of Escherichia coli requires strict regulation of long-range radical transfer between two subunits, α and ß, through a series of redox-active amino acids (Y122•[ß] ↔ W48?[ß] ↔ Y356[ß] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]). Nowhere is this more precarious than at the subunit interface. Here, we show that the oxidation of Y356 is regulated by proton release involving a specific residue, E52[ß], which is part of a water channel at the subunit interface for rapid proton transfer to the bulk solvent. An E52Q variant is incapable of Y356 oxidation via the native radical transfer pathway or non-native photochemical oxidation, following photosensitization by covalent attachment of a photo-oxidant at position 355[ß]. Substitution of Y356 for various FnY analogues in an E52Q-photoß2, where the side chain remains deprotonated, recovered photochemical enzymatic turnover. Transient absorption and emission data support the conclusion that Y356 oxidation requires E52 for proton management, suggesting its essential role in gating radical transport across the protein-protein interface.


Asunto(s)
Radicales Libres/química , Protones , Ribonucleótido Reductasas/química , Complejos de Coordinación/química , Complejos de Coordinación/efectos de la radiación , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Ácido Glutámico/química , Cinética , Luz , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Renio/química , Renio/efectos de la radiación , Ribonucleótido Reductasas/genética , Tirosina/química
4.
J Am Chem Soc ; 142(32): 13768-13778, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32631052

RESUMEN

Ribonucleotide reductases (RNRs) catalyze the conversion of all four ribonucleotides to deoxyribonucleotides and are essential for DNA synthesis in all organisms. The active form of E. coli Ia RNR is composed of two homodimers that form the active α2ß2 complex. Catalysis is initiated by long-range radical translocation over a ∼32 Å proton-coupled electron transfer (PCET) pathway involving Y356ß and Y731α at the interface. Resolving the PCET pathway at the α/ß interface has been a long-standing challenge due to the lack of structural data. Herein, molecular dynamics simulations based on a recently solved cryogenic-electron microscopy structure of an active α2ß2 complex are performed to examine the structure and fluctuations of interfacial water, as well as the hydrogen-bonding interactions and conformational motions of interfacial residues along the PCET pathway. Our free energy simulations reveal that Y731 is able to sample both a flipped-out conformation, where it points toward the interface to facilitate interfacial PCET with Y356, and a stacked conformation with Y730 to enable collinear PCET with this residue. Y356 and Y731 exhibit hydrogen-bonding interactions with interfacial water molecules and, in some conformations, share a bridging water molecule, suggesting that the primary proton acceptor for PCET from Y356 and from Y731 is interfacial water. The conformational flexibility of Y731 and the hydrogen-bonding interactions of both Y731 and Y356 with interfacial water and hydrogen-bonded water chains appear critical for effective radical translocation along the PCET pathway. These simulations are consistent with biochemical and spectroscopic data and provide previously unattainable atomic-level insights into the fundamental mechanism of RNR.


Asunto(s)
Escherichia coli/enzimología , Ribonucleótido Reductasas/química , Biocatálisis , Transporte de Electrón , Modelos Moleculares , Conformación Molecular , Protones , Ribonucleótido Reductasas/metabolismo , Agua/química , Agua/metabolismo
5.
Annu Rev Biochem ; 89: 45-75, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569524

RESUMEN

Ribonucleotide reductases (RNRs) catalyze the de novo conversion of nucleotides to deoxynucleotides in all organisms, controlling their relative ratios and abundance. In doing so, they play an important role in fidelity of DNA replication and repair. RNRs' central role in nucleic acid metabolism has resulted in five therapeutics that inhibit human RNRs. In this review, we discuss the structural, dynamic, and mechanistic aspects of RNR activity and regulation, primarily for the human and Escherichia coli class Ia enzymes. The unusual radical-based organic chemistry of nucleotide reduction, the inorganic chemistry of the essential metallo-cofactor biosynthesis/maintenance, the transport of a radical over a long distance, and the dynamics of subunit interactions all present distinct entry points toward RNR inhibition that are relevant for drug discovery. We describe the current mechanistic understanding of small molecules that target different elements of RNR function, including downstream pathways that lead to cell cytotoxicity. We conclude by summarizing novel and emergent RNR targeting motifs for cancer and antibiotic therapeutics.


Asunto(s)
Antibacterianos/química , Antineoplásicos/química , Infecciones por Escherichia coli/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Nucleótidos/metabolismo , Ribonucleótido Reductasas/química , Antibacterianos/uso terapéutico , Antineoplásicos/uso terapéutico , Biocatálisis , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Infecciones por Escherichia coli/enzimología , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Nucleótidos/química , Oxidación-Reducción , Estructura Secundaria de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Relación Estructura-Actividad
6.
Science ; 368(6489): 424-427, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32217749

RESUMEN

Ribonucleotide reductases (RNRs) are a diverse family of enzymes that are alone capable of generating 2'-deoxynucleotides de novo and are thus critical in DNA biosynthesis and repair. The nucleotide reduction reaction in all RNRs requires the generation of a transient active site thiyl radical, and in class I RNRs, this process involves a long-range radical transfer between two subunits, α and ß. Because of the transient subunit association, an atomic resolution structure of an active α2ß2 RNR complex has been elusive. We used a doubly substituted ß2, E52Q/(2,3,5)-trifluorotyrosine122-ß2, to trap wild-type α2 in a long-lived α2ß2 complex. We report the structure of this complex by means of cryo-electron microscopy to 3.6-angstrom resolution, allowing for structural visualization of a 32-angstrom-long radical transfer pathway that affords RNR activity.


Asunto(s)
Proteínas de Escherichia coli/química , Ribonucleótido Reductasas/química , Biocatálisis , Dominio Catalítico , Microscopía por Crioelectrón , Proteínas de Escherichia coli/genética , Holoenzimas/química , Holoenzimas/genética , Conformación Proteica , Ribonucleótido Reductasas/genética , Tirosina/química
7.
J Biol Chem ; 292(22): 9229-9239, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28377505

RESUMEN

Ribonucleotide reductases (RNRs) catalyze the conversion of nucleoside diphosphate substrates (S) to deoxynucleotides with allosteric effectors (e) controlling their relative ratios and amounts, crucial for fidelity of DNA replication and repair. Escherichia coli class Ia RNR is composed of α and ß subunits that form a transient, active α2ß2 complex. The E. coli RNR is rate-limited by S/e-dependent conformational change(s) that trigger the radical initiation step through a pathway of 35 Å across the subunit (α/ß) interface. The weak subunit affinity and complex nucleotide-dependent quaternary structures have precluded a molecular understanding of the kinetic gating mechanism(s) of the RNR machinery. Using a docking model of α2ß2 created from X-ray structures of α and ß and conserved residues from a new subclassification of the E. coli Ia RNR (Iag), we identified and investigated four residues at the α/ß interface (Glu350 and Glu52 in ß2 and Arg329 and Arg639 in α2) of potential interest in kinetic gating. Mutation of each residue resulted in loss of activity and with the exception of E52Q-ß2, weakened subunit affinity. An RNR mutant with 2,3,5-trifluorotyrosine radical (F3Y122•) replacing the stable Tyr122• in WT-ß2, a mutation that partly overcomes conformational gating, was placed in the E52Q background. Incubation of this double mutant with His6-α2/S/e resulted in an RNR capable of catalyzing pathway-radical formation (Tyr356•-ß2), 0.5 eq of dCDP/F3Y122•, and formation of an α2ß2 complex that is isolable in pulldown assays over 2 h. Negative stain EM images with S/e (GDP/TTP) revealed the uniformity of the α2ß2 complex formed.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Simulación del Acoplamiento Molecular , Ribonucleótido Reductasas/química , Sustitución de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación Missense , Ribonucleótido Reductasas/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(48): 13750-13755, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849620

RESUMEN

HD domain phosphohydrolase enzymes are characterized by a conserved set of histidine and aspartate residues that coordinate an active site metallocenter. Despite the important roles these enzymes play in nucleotide metabolism and signal transduction, few have been both biochemically and structurally characterized. Here, we present X-ray crystal structures and biochemical characterization of the Bacillus megaterium HD domain phosphohydrolase OxsA, involved in the biosynthesis of the antitumor, antiviral, and antibacterial compound oxetanocin-A. These studies reveal a previously uncharacterized reaction for this family; OxsA catalyzes the conversion of a triphosphorylated compound into a nucleoside, releasing one molecule of inorganic phosphate at a time. Remarkably, this functionality is a result of the OxsA active site, which based on structural and kinetic analyses has been tailored to bind the small, four-membered ring of oxetanocin-A over larger substrates. Furthermore, our OxsA structures show an active site that switches from a dinuclear to a mononuclear metal center as phosphates are eliminated from substrate.


Asunto(s)
Adenina/análogos & derivados , Bacillus megaterium/enzimología , Monoéster Fosfórico Hidrolasas/química , Conformación Proteica , Adenina/biosíntesis , Adenina/química , Ácido Aspártico/química , Ácido Aspártico/genética , Bacillus megaterium/química , Sitios de Unión , Catálisis , Dominio Catalítico/genética , Cristalografía por Rayos X , Histidina/química , Histidina/genética , Cinética , Monoéster Fosfórico Hidrolasas/genética , Transducción de Señal , Especificidad por Sustrato
9.
Elife ; 5: e07141, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26754917

RESUMEN

Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively. Here, we have determined structures of Escherichia coli class Ia RNR with all four substrate/specificity effector-pairs bound (CDP/dATP, UDP/dATP, ADP/dGTP, GDP/TTP) that reveal the conformational rearrangements responsible for this remarkable allostery. These structures delineate how RNR 'reads' the base of each effector and communicates substrate preference to the active site by forming differential hydrogen bonds, thereby maintaining the proper balance of deoxynucleotides in the cell.


Asunto(s)
Regulación Alostérica , Desoxirribonucleótidos/química , Desoxirribonucleótidos/metabolismo , Escherichia coli/enzimología , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
10.
Nature ; 526(7574): 536-41, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26416754

RESUMEN

Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide visualizations of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter -35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activates transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. These results expand the biological role of vitamin B12 and provide fundamental insight into a new mode of light-dependent gene regulation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cobamidas/metabolismo , Regulación Bacteriana de la Expresión Génica , Thermus thermophilus , Vitamina B 12/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cobamidas/efectos de la radiación , Cristalografía por Rayos X , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Oscuridad , Dimerización , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Luz , Modelos Moleculares , Datos de Secuencia Molecular , Regiones Operadoras Genéticas/genética , Regiones Promotoras Genéticas/genética , Estructura Cuaternaria de Proteína/efectos de la radiación , Thermus thermophilus/química , Thermus thermophilus/genética , Thermus thermophilus/efectos de la radiación , Transcripción Genética/genética , Transcripción Genética/efectos de la radiación , Vitamina B 12/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA