Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0300541, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483875

RESUMEN

Glycerol dehydrogenase (GDH) catalyzes glycerol oxidation to dihydroxyacetone in a NAD+-dependent manner. As an initiator of the oxidative pathway of glycerol metabolism, a variety of functional and structural studies of GDH have been conducted previously. Structural studies revealed intriguing features of GDH, like the flexible ß-hairpin and its significance. Another commonly reported structural feature is the enzyme's octameric oligomerization, though its structural details and functional significance remained unclear. Here, with a newly reported GDH structure, complexed with both NAD+ and glycerol, we analyzed the octamerization of GDH. Structural analyses revealed that octamerization reduces the structural dynamics of the N-domain, which contributes to more consistently maintaining a distance required for catalysis between the cofactor and substrate. This suggests that octamerization may play a key role in increasing the likelihood of the enzyme reaction by maintaining the ligands in an appropriate configuration for catalysis. These findings expand our understanding of the structure of GDH and its relation to the enzyme's activity.


Asunto(s)
NAD , Deshidrogenasas del Alcohol de Azúcar , NAD/metabolismo , Glicerol/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Oxidación-Reducción , Glutamato Deshidrogenasa/metabolismo
2.
FEBS J ; 290(17): 4342-4355, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37165682

RESUMEN

During glycerol metabolism, the initial step of glycerol oxidation is catalysed by glycerol dehydrogenase (GDH), which converts glycerol to dihydroxyacetone in a NAD+ -dependent manner via an ordered Bi-Bi kinetic mechanism. Structural studies conducted with GDH from various species have mainly elucidated structural details of the active site and ligand binding. However, the structure of the full GDH complex with both cofactor and substrate bound is not determined, and thus, the structural basis of the kinetic mechanism of GDH remains unclear. Here, we report the crystal structures of Escherichia coli GDH with a substrate analogue bound in the absence or presence of NAD+ . Structural analyses including molecular dynamics simulations revealed that GDH possesses a flexible ß-hairpin, and that during the ordered progression of the kinetic mechanism, the flexibility of the ß-hairpin is reduced after NAD+ binding. It was also observed that this alterable flexibility of the ß-hairpin contributes to the cofactor binding and possibly to the catalytic efficiency of GDH. These findings suggest the importance of the flexible ß-hairpin to GDH enzymatic activity and shed new light on the kinetic mechanism of GDH.


Asunto(s)
NAD , Deshidrogenasas del Alcohol de Azúcar , NAD/metabolismo , Glicerol/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Oxidación-Reducción , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Glutamato Deshidrogenasa/metabolismo
3.
IUCrJ ; 10(Pt 2): 233-245, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36862489

RESUMEN

EF-hand proteins, which contain a Ca2+-binding EF-hand motif, are involved in regulating diverse cellular functions. Ca2+ binding induces conformational changes that modulate the activities of EF-hand proteins. Moreover, these proteins occasionally modify their activities by coordinating metals other than Ca2+, including Mg2+, Pb2+ and Zn2+, within their EF-hands. EFhd1 and EFhd2 are homologous EF-hand proteins with similar structures. Although separately localized within cells, both are actin-binding proteins that modulate F-actin rearrangement through Ca2+-independent actin-binding and Ca2+-dependent actin-bundling activity. Although Ca2+ is known to affect the activities of EFhd1 and EFhd2, it is not known whether their actin-related activities are affected by other metals. Here, the crystal structures of the EFhd1 and EFhd2 core domains coordinating Zn2+ ions within their EF-hands are reported. The presence of Zn2+ within EFhd1 and EFhd2 was confirmed by analyzing anomalous signals and the difference between anomalous signals using data collected at the peak positions as well as low-energy remote positions at the Zn K-edge. EFhd1 and EFhd2 were also found to exhibit Zn2+-independent actin-binding and Zn2+-dependent actin-bundling activity. This suggests the actin-related activities of EFhd1 and EFhd2 could be regulated by Zn2+ as well as Ca2+.


Asunto(s)
Citoesqueleto de Actina , Actinas , Motivos EF Hand , Proteínas de Microfilamentos , Zinc
4.
IUCrJ ; 7(Pt 2): 355-365, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148862

RESUMEN

Mitochondrial calcium uptake proteins 1 and 2 (MICU1 and MICU2) mediate mitochondrial Ca2+ influx via the mitochondrial calcium uniporter (MCU). Its molecular action for Ca2+ uptake is tightly controlled by the MICU1-MICU2 heterodimer, which comprises Ca2+ sensing proteins which act as gatekeepers at low [Ca2+] or facilitators at high [Ca2+]. However, the mechanism underlying the regulation of the Ca2+ gatekeeping threshold for mitochondrial Ca2+ uptake through the MCU by the MICU1-MICU2 heterodimer remains unclear. In this study, we determined the crystal structure of the apo form of the human MICU1-MICU2 heterodimer that functions as the MCU gatekeeper. MICU1 and MICU2 assemble in the face-to-face heterodimer with salt bridges and me-thio-nine knobs stabilizing the heterodimer in an apo state. Structural analysis suggests how the heterodimer sets a higher Ca2+ threshold than the MICU1 homodimer. The structure of the heterodimer in the apo state provides a framework for understanding the gatekeeping role of the MICU1-MICU2 heterodimer.

5.
Front Cell Dev Biol ; 8: 628222, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537316

RESUMEN

Ca2+ regulates several cellular functions, including signaling events, energy production, and cell survival. These cellular processes are mediated by Ca2+-binding proteins, such as EF-hand superfamily proteins. Among the EF-hand superfamily proteins, allograft inflammatory factor-1 (AIF-1) and swiprosin-1/EF-hand domain-containing protein 2 (EFhd2) are cytosolic actin-binding proteins. AIF-1 modulates the cytoskeleton and increases the migration of immune cells. EFhd2 is also a cytoskeletal protein implicated in immune cell activation and brain cell functions. EFhd1, a mitochondrial fraternal twin of EFhd2, mediates neuronal and pro-/pre-B cell differentiation and mitoflash activation. Although EFhd1 is important for maintaining mitochondrial morphology and energy synthesis, its mechanism of action remains unclear. Here, we report the crystal structure of the EFhd1 core domain comprising a C-terminus of a proline-rich region, two EF-hand domains, and a ligand mimic helix. Structural comparisons of EFhd1, EFhd2, and AIF-1 revealed similarities in their overall structures. In the structure of the EFhd1 core domain, two Zn2+ ions were observed at the interface of the crystal contact, suggesting the possibility of Zn2+-mediated multimerization. In addition, we found that EFhd1 has Ca2+-independent ß-actin-binding and Ca2+-dependent ß-actin-bundling activities. These findings suggest that EFhd1, an actin-binding and -bundling protein in the mitochondria, may contribute to the Ca2+-dependent regulation of mitochondrial morphology and energy synthesis.

6.
Biochem Biophys Res Commun ; 507(1-4): 383-388, 2018 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-30446220

RESUMEN

The eukaryotic primase/polymerase complex synthesizes approximately 107 primers, one per Okazaki fragment, during the replication of mammalian chromosomes, which contain 109 base pairs. Primase catalyzes the synthesis of a short RNA segment to a single-stranded DNA template. Primase is important in DNA replication because no known replicative DNA polymerases can initiate the synthesis of a DNA strand without an initial RNA primer. The primase subcomplex is composed of a small catalytic subunit (p49), and a large accessory subunit (p58). Priming mechanisms remain poorly understood, although large numbers of structures of archaeal and eukaryotic p49 and/or p58 as well as structures of bacterial enzymes have been determined. In this study, we determined the structure of human p49 at 2.2 Šresolution with citrate in its inactive forms. Dibasic citrate was bound at the nucleotide triphosphate (NTP) ß, γ-phosphate binding site through nine hydrogen bonds. We also measured the dissociation constant of citrate and NTPs. We further demonstrated that the p49 activity is regulated by pH and citrate, which was not previously recognized as a key regulator of DNA replication. We propose that the citrate inhibits the primase and regulates DNA replication at the replication fork.


Asunto(s)
Ácido Cítrico/farmacología , ADN Primasa/antagonistas & inhibidores , ADN Primasa/química , Inhibidores Enzimáticos/farmacología , Aniones , Calorimetría , Dominio Catalítico , Ácido Cítrico/química , Cristalografía por Rayos X , ADN Primasa/metabolismo , Cartilla de ADN/metabolismo , Inhibidores Enzimáticos/química , Humanos , Nucleótidos/metabolismo
7.
Biochem Biophys Res Commun ; 506(1): 102-107, 2018 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-30336976

RESUMEN

Ubiquitin-conjugating enzymes (E2) form thioester bonds with ubiquitin (Ub), which are subsequently transferred to target proteins for cellular progress. Ube2K/E2-25K (a class II E2 enzyme) contains a C-terminal ubiquitin-associated (UBA) domain that has been suggested to control ubiquitin recognition, dimerization, or poly-ubiquitin chain formation. Ube2K is a special E2 because it synthesizes K48-linked poly-ubiquitin chains without E3 ubiquitin ligase. We found that a novel interaction between the acceptor di-Ub (Ub2) and the auxiliary Ube2K promotes the discharging reaction and production of tri-Ub (Ub3), probably by guiding and positioning the K48 (in the distal Ub) of the acceptor Ub2 in the active site. We also determined the crystal structure of Ube2K-Ub2 at 2.47 Šresolution. Based on our structural and biochemical data, we proposed a structural model of Ub3 synthesis by Ube2K without E3.


Asunto(s)
Lisina/química , Enzimas Activadoras de Ubiquitina/química , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitinas/química , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Lisina/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
8.
Biochem Biophys Res Commun ; 486(2): 470-475, 2017 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-28315686

RESUMEN

Anti-bacterial and anti-viral neuraminidase agents inhibit neuraminidase activity catalyzing the hydrolysis of terminal N-acetylneuraminic acid (Neu5Ac) from glycoconjugates and help to prevent the host pathogenesis that lead to fatal infectious diseases including influenza, bacteremia, sepsis, and cholera. Emerging antibiotic and drug resistances to commonly used anti-neuraminidase agents such as oseltamivir (Tamiflu) and zanamivir (Relenza) have highlighted the need to develop new anti-neuraminidase drugs. We obtained a serendipitous complex crystal of the catalytic domain of Clostridium perfringens neuraminidase (CpNanICD) with 2-(cyclohexylamino)ethanesulfonic acid (CHES) as a buffer. Here, we report the crystal structure of CpNanICD in complex with CHES at 1.24 Å resolution. Amphipathic CHES binds to the catalytic site of CpNanICD similar to the substrate (Neu5Ac) binding site. The 2-aminoethanesulfonic acid moiety and cyclohexyl groups of CHES interact with the cluster of three arginine residues and with the hydrophobic pocket of the CpNanICD catalytic site. In addition, a structural comparison with other bacterial and human neuraminidases suggests that CHES could serve as a scaffold for the development of new anti-neuraminidase agents targeting CpNanI.


Asunto(s)
Proteínas Bacterianas/química , Clostridium perfringens/química , Inhibidores Enzimáticos/química , Neuraminidasa/química , Taurina/análogos & derivados , Secuencias de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Clostridium perfringens/enzimología , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/genética , Neuraminidasa/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Taurina/química
9.
Biochem Biophys Res Commun ; 483(1): 442-448, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28011271

RESUMEN

EF-hand domain-containing protein D2/Swiprosin-1 (EFhd2) is an actin-binding protein mainly expressed in the central nervous and the immune systems of mammals. Intracellular events linked to EFhd2, such as membrane protrusion formation, cell adhesion, and BCR signaling, are triggered by the association of EFhd2 and F-actin. We previously reported that Ca2+ enhances the F-actin-bundling ability of EFhd2 through maintaining a rigid parallel EFhd2-homodimer structure. It was also reported that the F-actin-bundling ability of EFhd2 is regulated by a phosphorylation-dependent mechanism. EGF-induced phosphorylation at Ser183 of EFhd2 has been shown to inhibit F-actin-bundling, leading to irregular actin dynamics at the leading edges of cells. However, the underlying mechanism of this inhibition has remained elusive. Here, we report the crystal structure of a phospho-mimicking mutant (S183E) of the EFhd2 core domain, where the actin-binding sites are located. Although the overall structure of the phospho-mimicking mutant is similar to the one of the unphosphorylated form, we observed a conformational transition from ordered to disordered structure in the linker region at the C-terminus of the mutant. Based on our structural and biochemical analyses, we suggest that phosphorylation at Ser183 of EFhd2 causes changes in the local conformational dynamics and the surface charge distribution of the actin-binding site, resulting in a re-coordination of the actin-binding sites in the dimer structure and a reduction of F-actin-bundling activity without affecting the F-actin-binding capacity.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Actinas/metabolismo , Sitios de Unión , Proteínas de Unión al Calcio/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutación , Fosforilación , Conformación Proteica , Multimerización de Proteína , Serina/metabolismo
10.
Sci Rep ; 6: 39095, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27974828

RESUMEN

EFhd2/Swiprosin-1 is a cytoskeletal Ca2+-binding protein implicated in Ca2+-dependent cell spreading and migration in epithelial cells. EFhd2 domain architecture includes an N-terminal disordered region, a PxxP motif, two EF-hands, a ligand mimic helix and a C-terminal coiled-coil domain. We reported previously that EFhd2 displays F-actin bundling activity in the presence of Ca2+ and this activity depends on the coiled-coil domain and direct interaction of the EFhd2 core region. However, the molecular mechanism for the regulation of F-actin binding and bundling by EFhd2 is unknown. Here, the Ca2+-bound crystal structure of the EFhd2 core region is presented and structures of mutants defective for Ca2+-binding are also described. These structures and biochemical analyses reveal that the F-actin bundling activity of EFhd2 depends on the structural rigidity of F-actin binding sites conferred by binding of the EF-hands to Ca2+. In the absence of Ca2+, the EFhd2 core region exhibits local conformational flexibility around the EF-hand domain and C-terminal linker, which retains F-actin binding activity but loses the ability to bundle F-actin. In addition, we establish that dimerisation of EFhd2 via the C-terminal coiled-coil domain, which is necessary for F-actin bundling, occurs through the parallel coiled-coil interaction.


Asunto(s)
Actinas/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína
11.
FEBS Lett ; 590(23): 4402-4413, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27714797

RESUMEN

The interaction of the rhomboid pseudoprotease Derlin-1 and p97 is crucial for the retrotranslocation of polyubiquitinated substrates in the endoplasmic reticulum-associated degradation pathway. We report a 2.25 Å resolution structure of the p97 N-terminal domain (p97N) in complex with the Derlin-1 SHP motif. Remarkably, the SHP motif adopts a short, antiparallel ß-strand that interacts with the ß-sheet of p97N-a site distinct from that to which most p97 adaptor proteins bind. Mutational and biochemical analyses contributed to defining the specific interaction, demonstrating the importance of a highly conserved binding pocket on p97N and a signature motif on SHP. Our findings may also provide insights into the interactions between other SHP-containing proteins and p97N.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Sitios de Unión , Secuencia Conservada , Degradación Asociada con el Retículo Endoplásmico , Humanos , Unión Proteica , Dominios Proteicos
12.
Biochem J ; 473(18): 2863-80, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27407164

RESUMEN

RHBDL4 is an active rhomboid that specifically recognizes and cleaves atypical, positively charged transmembrane endoplasmic reticulum-associated degradation (ERAD) substrates. Interaction of valosin-containing protein (p97/VCP) and RHBDL4 is crucial to retrotranslocate polyubiquitinated substrates for ERAD pathway. Here, we report the first complex structure of VCP-binding motif (VBM) with p97 N-terminal domain (p97N) at 1.88 Šresolution. Consistent with p97 adaptor proteins including p47-ubiquitin regulatory X (UBX), gp78-VCP-interacting motif (VIM), OTU1-UBX-like element, and FAF1-UBX, RHBDL4 VBM also binds at the interface between the two lobes of p97N. Notably, the RF residues in VBM are involved in the interaction with p97N, showing a similar interaction pattern with that of FPR signature motif in the UBX domain, although the directionality is opposite. Comparison of VBM interaction with VIM of gp78, another α-helical motif that interacts with p97N, revealed that the helix direction is inversed. Nevertheless, the conserved arginine residues in both motifs participate in the majority of the interface via extensive hydrogen bonds and ionic interactions with p97N. We identified novel VBM-binding mode to p97N that involves a combination of two types of p97-cofactor specificities observed in the UBX and VIM interactions. This highlights the induced fit model of p97N interdomain cleft upon cofactor binding to form stable p97-cofactor complexes. Our mutational and biochemical analyses in defining the specific interaction between VBM and p97N have elucidated the importance of the highly conserved VBM, applicable to other VBM-containing proteins. We also showed that RHBDL4, ubiquitins, and p97 co-operate for efficient substrate dislocation.


Asunto(s)
Proteínas de la Membrana/química , Secuencia de Aminoácidos , Animales , Humanos , Conformación Proteica , Homología de Secuencia de Aminoácido , Difracción de Rayos X
13.
Sci Rep ; 6: 19681, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26805589

RESUMEN

Quinolinate phosphoribosyltransferase (QPRT) catalyses the production of nicotinic acid mononucleotide, a precursor of de novo biosynthesis of the ubiquitous coenzyme nicotinamide adenine dinucleotide. QPRT is also essential for maintaining the homeostasis of quinolinic acid in the brain, a possible neurotoxin causing various neurodegenerative diseases. Although QPRT has been extensively analysed, the molecular basis of the reaction catalysed by human QPRT remains unclear. Here, we present the crystal structures of hexameric human QPRT in the apo form and its complexes with reactant or product. We found that the interaction between dimeric subunits was dramatically altered during the reaction process by conformational changes of two flexible loops in the active site at the dimer-dimer interface. In addition, the N-terminal short helix α1 was identified as a critical hexamer stabilizer. The structural features, size distribution, heat aggregation and ITC studies of the full-length enzyme and the enzyme lacking helix α1 strongly suggest that human QPRT acts as a hexamer for cooperative reactant binding via three dimeric subunits and maintaining stability. Based on our comparison of human QPRT structures in the apo and complex forms, we propose a drug design strategy targeting malignant glioma.


Asunto(s)
Glioma/tratamiento farmacológico , NAD/biosíntesis , Pentosiltransferasa/química , Catálisis , Cristalografía por Rayos X , Dimerización , Diseño de Fármacos , Glioma/genética , Humanos , Pentosiltransferasa/metabolismo , Conformación Proteica en Hélice alfa
14.
EMBO Rep ; 16(10): 1318-33, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26341627

RESUMEN

The mitochondrial calcium uniporter (MCU) is responsible for mitochondrial calcium uptake and homeostasis. It is also a target for the regulation of cellular anti-/pro-apoptosis and necrosis by several oncogenes and tumour suppressors. Herein, we report the crystal structure of the MCU N-terminal domain (NTD) at a resolution of 1.50 Å in a novel fold and the S92A MCU mutant at 2.75 Å resolution; the residue S92 is a predicted CaMKII phosphorylation site. The assembly of the mitochondrial calcium uniporter complex (uniplex) and the interaction with the MCU regulators such as the mitochondrial calcium uptake-1 and mitochondrial calcium uptake-2 proteins (MICU1 and MICU2) are not affected by the deletion of MCU NTD. However, the expression of the S92A mutant or a NTD deletion mutant failed to restore mitochondrial Ca(2+) uptake in a stable MCU knockdown HeLa cell line and exerted dominant-negative effects in the wild-type MCU-expressing cell line. These results suggest that the NTD of MCU is essential for the modulation of MCU function, although it does not affect the uniplex formation.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Cristalografía por Rayos X , Células HEK293 , Células HeLa , Humanos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Modelos Moleculares , Mutación , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
15.
J Synchrotron Radiat ; 20(Pt 6): 984-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24121353

RESUMEN

Proper cell division at the mid-site of gram-negative bacteria reflects critical regulation by the min system (MinC, MinD and MinE) of the cytokinetic Z ring, which is a polymer composed of FtsZ subunits. MinC and MinD act together to inhibit aberrantly positioned Z-ring formation. MinC consists of two domains: an N-terminal domain (MinCNTD), which interacts with FtsZ and inhibits FtsZ polymerization, and a C-terminal domain (MinCCTD), which interacts with MinD and inhibits the bundling of FtsZ filaments. These two domains reportedly function together, and both are essential for normal cell division. The full-length dimeric structure of MinC from Thermotoga maritima has been reported, and shows that MinC dimerization occurs via MinCCTD; MinCNTD is not involved in dimerization. Here the crystal structure of Escherichia coli MinCNTD (EcoMinCNTD) is reported. EcoMinCNTD forms a dimer via domain swapping between the first ß strands in each subunit. It is therefore suggested that the dimerization of full-length EcoMinC occurs via both MinCCTD and MinCNTD, and that the dimerized EcoMinCNTD likely plays an important role in inhibiting aberrant Z-ring localization.


Asunto(s)
Proteínas Bacterianas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Clonación Molecular , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Thermotoga maritima/química
16.
PLoS One ; 8(4): e62027, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23626766

RESUMEN

We have determined the crystal structure of porcine quinolinate phosphoribosyltransferase (QAPRTase) in complex with nicotinate mononucleotide (NAMN), which is the first crystal structure of a mammalian QAPRTase with its reaction product. The structure was determined from protein obtained from the porcine kidney. Because the full protein sequence of porcine QAPRTase was not available in either protein or nucleotide databases, cDNA was synthesized using reverse transcriptase-polymerase chain reaction to determine the porcine QAPRTase amino acid sequence. The crystal structure revealed that porcine QAPRTases have a hexameric structure that is similar to other eukaryotic QAPRTases, such as the human and yeast enzymes. However, the interaction between NAMN and porcine QAPRTase was different from the interaction found in prokaryotic enzymes, such as those of Helicobacter pylori and Mycobacterium tuberculosis. The crystal structure of porcine QAPRTase in complex with NAMN provides a structural framework for understanding the unique properties of the mammalian QAPRTase active site and designing new antibiotics that are selective for the QAPRTases of pathogenic bacteria, such as H. pylori and M. tuberculosis.


Asunto(s)
Riñón/química , Mononucleótido de Nicotinamida/análogos & derivados , Pentosiltransferasa/química , Animales , Dominio Catalítico , Cristalografía por Rayos X , ADN Complementario/genética , Helicobacter pylori/química , Helicobacter pylori/enzimología , Humanos , Riñón/enzimología , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimología , Mononucleótido de Nicotinamida/química , Pentosiltransferasa/genética , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Especificidad de la Especie , Homología Estructural de Proteína , Porcinos
17.
Mol Cells ; 31(5): 447-54, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21399993

RESUMEN

We carried out activation tagging screen to isolate genes regulating abscisic acid (ABA) response. From the screen of approximately 10,000 plants, we isolated ca 100 ABA response mutants. We characterized one of the mutants, designated ahs1, in this study. The mutant is ABA-hypersensitive, and AtMYB52 was found to be activated in the mutant. Overexpression analysis to recapitulate the mutant phenotypes demonstrated that ATMYB confers ABA-hypersensitivity during postgermination growth. Additionally, AtMYB52 overexpression lines were drought-tolerant and their seedlings were salt-sensitive. Changes in the expression levels of a few genes involved in ABA response or cell wall biosynthesis were also observed. Together, our data suggest that AtMYB52 is involved in ABA response. Others previously demonstrated that AtMYB52 regulates cell wall biosynthesis; thus, our results imply a possible connection between ABA response and cell wall biosynthesis.


Asunto(s)
Ácido Abscísico/fisiología , Proteínas de Arabidopsis/biosíntesis , Arabidopsis/fisiología , Sequías , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Fenotipo
18.
Mol Cells ; 29(6): 559-66, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20496121

RESUMEN

ARIA is an ARM repeat protein that is a positive regulator of ABA response. To identify ARIA-interacting proteins, we conducted yeast two-hybrid screening. One of the positive clones obtained from the screen encoded a protein kinase, AtNEK6, which belongs to the NIMA (Never In Mitosis, gene A)-related kinase family. We analyzed AtNEK6 over-expression (OX) and knockout (KO) lines to investigate its in vivo function. The AtNEK6 OX lines grew slowly, whereas the KO line germinated and grew faster than wild type plants. AtNEK6 also affected ABA and stress responses. During seed germination, AtNEK6 OX lines were hypersensitive to ABA and high osmolarity, whereas its KO line was partially insensitive to ABA and high osmolarity. Previously, AtNEK6 was shown to be involved in epidermal cell morphogenesis. Our results indicate that AtNEK6 is also involved in plant growth regulation and responses to ABA and high osmolarity during the seed germination stage.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Germinación , Proteínas Serina-Treonina Quinasas/metabolismo , Semillas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas del Dominio Armadillo/genética , Procesos de Crecimiento Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Quinasas Relacionadas con NIMA , Concentración Osmolar , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Semillas/genética , Transducción de Señal , Estrés Fisiológico/genética , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
19.
Plant Physiol ; 153(2): 716-27, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20395451

RESUMEN

ABF2 is a basic leucine zipper protein that regulates abscisic acid (ABA)-dependent stress-responsive gene expression. We carried out yeast two-hybrid screens to isolate genes encoding ABF2-interacting proteins in Arabidopsis (Arabidopsis thaliana). Analysis of the resulting positive clones revealed that two of them encode an AP2 domain protein, which is the same as AtERF48/DREB2C. This protein, which will be referred to as DREB2C, could bind C-repeat/dehydration response element in vitro and possesses transcriptional activity. To determine its function, we generated DREB2C overexpression lines and investigated their phenotypes. The transgenic plants were ABA hypersensitive during germination and seedling establishment stages, whereas primary root elongation of seedlings was ABA insensitive, suggesting developmental stage dependence of DREB2C function. The DREB2C overexpression lines also displayed altered stress response; whereas the plants were dehydration sensitive, they were freezing and heat tolerant. We further show that other AP2 domain proteins, DREB1A and DREB2A, interact with ABF2 and that other ABF family members, ABF3 and ABF4, interact with DREB2C. Previously, others demonstrated that ABF and DREB family members cooperate to activate the transcription of an ABA-responsive gene. Our result implies that the cooperation of the two classes of transcription factors may involve physical interaction.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Frío , Proteínas de Unión al ADN/genética , Deshidratación , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación , Calor , Datos de Secuencia Molecular , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , Plantones/crecimiento & desarrollo , Estrés Fisiológico , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
20.
Mol Cells ; 27(4): 409-16, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19390821

RESUMEN

ADAP is an AP2-domain protein that interacts with ARIA, which, in turn, interacts with ABF2, a bZIP class transcription factor. ABF2 regulates various aspects of the abscisic acid (ABA) response by controlling the expression of a subset of ABA-responsive genes. Our expression analyses indicate that ADAP is expressed in roots, emerging young leaves, and flowers. We found that adap knockout mutant lines germinate more efficiently than wild-type plants and that the mutant seedlings grow faster. This suggests that ADAP is involved in the regulation of germination and seedling growth. Both germination and post-germination growth of the knockout mutants were partially insensitive to ABA, which indicates that ADAP is required for a full ABA response. The survival rates for mutants from which water was withheld were low compared with those for wild-type plants. The result shows that ADAP is necessary for the response to stress induced by water deprivation. Together, our data indicate that ADAP is a positive regulator of the ABA response and is also involved in regulating seedling growth. The role of ADAP is similar to that of ARIA, which is also a positive regulator of the ABA response. It appears that ADAP acts through the same ABA response pathway as ARIA.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Sequías , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Germinación/genética , Germinación/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Datos de Secuencia Molecular , Reguladores del Crecimiento de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal , Estrés Fisiológico , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...