Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Toxicol Res ; 38(3): 393-407, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35865277

RESUMEN

Drug-induced liver injury (DILI) is one of the leading reasons for discontinuation of a new drug development project. Diverse machine learning or deep learning models have been developed to predict DILI. However, these models have not provided an adequate understanding of the mechanisms leading to DILI. The development of safer drugs requires novel computational approaches that enable the prompt understanding of the mechanism of DILI. In this study, the mechanisms leading to the development of cholestasis, steatosis, hepatitis, and cirrhosis were explored using a semi-automated approach for data gathering and associations. Diverse data from ToxCast, Comparative Toxicogenomic Database (CTD), Reactome, and Open TG-GATEs on reference molecules leading to the development of the respective diseases were extracted. The data were used to create biological networks of the four diseases. As expected, the four networks had several common pathways, and a joint DILI network was assembled. Such biological networks could be used in drug discovery to identify possible molecules of concern as they provide a better understanding of the disease-specific key events. The events can be target-tested to provide indications for potential DILI effects. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-022-00124-6.

2.
Bioinformatics ; 38(18): 4426-4427, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35900148

RESUMEN

SUMMARY: Drug-induced liver injury (DILI) is a challenging endpoint in predictive toxicology because of the complex reactive metabolites that cause liver damage and the wide range of mechanisms involved in the development of the disease. ToxSTAR provides structural similarity-based DILI analysis and in-house DILI prediction models that predict four DILI subtypes (cholestasis, cirrhosis, hepatitis and steatosis) based on drug and drug metabolite molecules. AVAILABILITY AND IMPLEMENTATION: ToxSTAR is freely available at https://toxstar.kitox.re.kr/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado
3.
Toxicol In Vitro ; 82: 105374, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35537566

RESUMEN

Drug-induced liver injury (DILI) is an adverse hepatic reaction and a serious concern for public healthcare systems and pharmaceutical companies. DILI is frequently caused by a combination of direct toxic stresses and subsequent immune damage to hepatocytes. However, little is known about the mechanism by which drugs facilitate the activation of the innate immune system. Here, we aimed to decipher the inflammatory events in trovafloxacin (TVX)-induced reactions using liver macrophages. We showed that proinflammatory M1-like macrophages mainly contributed to hepatotoxicity mediated by TVX, a DILI drug. Additionally, transcriptome results showed that the interferon type I pathway, cytokines, and apoptosis pathway were involved in the initiation of synergistic effects resulting in TVX-induced liver injury. We hypothesized that DILI drugs could drive liver injury by altering the activation and phenotype of hepatic macrophages. Furthermore, drug treatment-induced transcriptional changes such as Traf1 and 2, Socs3, and Hbegf in macrophage polarization could be used to assess drug-specific immune-mediated reactions. Therefore, we proposed that transcriptional change in the genes related to macrophage polarization index could be an indicator to reflect the severity of DILI in a preclinical setting during drug development.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Fluoroquinolonas , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Hígado/metabolismo , Macrófagos , Naftiridinas/metabolismo , Naftiridinas/toxicidad
4.
Molecules ; 28(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36615451

RESUMEN

Thirteen compounds were isolated from the Canavalia lineata pods and their inhibitory activities against human monoamine oxidase-A (hMAO-A) and -B (hMAO-B) were evaluated. Among them, compounds 8 (medicarpin) and 13 (homopterocarpin) showed potent inhibitory activity against hMAO-B (IC50 = 0.45 and 0.72 µM, respectively) with selectivity index (SI) values of 44.2 and 2.07, respectively. Most of the compounds weakly inhibited MAO-A, except 9 (prunetin) and 13. Compounds 8 and 13 were reversible competitive inhibitors against hMAO-B (Ki = 0.27 and 0.21 µM, respectively). Structurally, the 3-OH group at A-ring of 8 showed higher hMAO-B inhibitory activity than 3-OCH3 group at the A-ring of 13. However, the 9-OCH3 group at B-ring of 13 showed higher hMAO-B inhibitory activity than 8,9-methylenedioxygroup at the B-ring of 12 (pterocarpin). In cytotoxicity study, 8 and 13 showed non-toxicity to the normal (MDCK) and cancer (HL-60) cells and moderate toxicity to neuroblastoma (SH-SY5Y) cell. Molecular docking simulation revealed that the binding affinities of 8 and 13 for hMAO-B (-8.7 and -7.7 kcal/mol, respectively) were higher than those for hMAO-A (-3.4 and -7.1 kcal/mol, respectively). These findings suggest that compounds 8 and 13 be considered potent reversible hMAO-B inhibitors to be used for the treatment of neurological disorders.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Neuroblastoma , Humanos , Inhibidores de la Monoaminooxidasa/química , Canavalia , Simulación del Acoplamiento Molecular , Monoaminooxidasa/metabolismo , Relación Estructura-Actividad
5.
Molecules ; 26(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34946636

RESUMEN

Drug-induced liver injury (DILI) is a major concern for drug developers, regulators, and clinicians. However, there is no adequate model system to assess drug-associated DILI risk in humans. In the big data era, computational models are expected to play a revolutionary role in this field. This study aimed to develop a deep neural network (DNN)-based model using extended connectivity fingerprints of diameter 4 (ECFP4) to predict DILI risk. Each data set for the predictive model was retrieved and curated from DILIrank, LiverTox, and other literature. The best model was constructed through ten iterations of stratified 10-fold cross-validation, and the applicability domain was defined based on integer ECFP4 bits of the training set which represented substructures. For the robustness test, we employed the concept of the endurance level. The best model showed an accuracy of 0.731, a sensitivity of 0.714, and a specificity of 0.750 on the validation data set in the complete applicability domain. The model was further evaluated with four external data sets and attained an accuracy of 0.867 on 15 drugs with DILI cases reported since 2019. Overall, the results suggested that the ECFP4-based DNN model represents a new tool to identify DILI risk for the evaluation of drug safety.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Simulación por Computador , Hígado/metabolismo , Aprendizaje Automático , Modelos Biológicos , Redes Neurales de la Computación , Humanos
6.
J Fungi (Basel) ; 7(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34682298

RESUMEN

Using 126 endogenous lichen fungus (ELF) extracts, inhibitory activities against monoamine oxidases (MAOs) and cholinesterases (ChEs) were evaluated. Among them, extract ELF29 of the endogenous fungus Diaporthe mahothocarpus of the lichen Cladonia symphycarpia showed the highest inhibitory activity against hMAO-A. Compounds alternariol (AT), 5'-hydroxy-alternariol (HAT), and mycoepoxydiene (MED), isolated from the extract, had potent inhibitory activities against hMAO-A with IC50 values of 0.020, 0.31, and 8.68 µM, respectively. AT, HAT, and MED are reversible competitive inhibitors of hMAO-A with Ki values of 0.0075, 0.116, and 3.76 µM, respectively. The molecular docking studies suggested that AT, HAT, and MED had higher binding affinities for hMAO-A (-9.1, -6.9, and -5.6 kcal/mol, respectively) than for hMAO-B (-6.3, -5.2, and -3.7 kcal/mol, respectively). The relative tight binding might result from a hydrogen bond interaction of the three compounds with a Tyr444 residue in hMAO-A, whereas no hydrogen bond interaction was proposed in hMAO-B. In silico pharmacokinetics, the three compounds showed high gastrointestinal absorption without violating Lipinski's five rules, but only MED showed high probability to cross the blood-brain barrier. These results suggest that AT, HAT, and MED are candidates for treating neuropsychiatric disorders, such as depression and cardiovascular disease.

7.
Sci Rep ; 11(1): 13953, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230570

RESUMEN

Among 276 herbal extracts, a methanol extract of Castanopsis cuspidata var. sieboldii stems was selected as an experimental source for novel acetylcholinesterase (AChE) inhibitors. Five compounds were isolated from the extract by activity-guided screening, and their inhibitory activities against butyrylcholinesterase (BChE), monoamine oxidases (MAOs), and ß-site amyloid precursor protein cleaving enzyme 1 (BACE-1) were also evaluated. Of these compounds, 4'-O-(α-L-rhamnopyranosyl)-3,3',4-tri-O-methylellagic acid (3) and 3,3',4-tri-O-methylellagic acid (4) effectively inhibited AChE with IC50 values of 10.1 and 10.7 µM, respectively. Ellagic acid (5) inhibited AChE (IC50 = 41.7 µM) less than 3 and 4. In addition, 3 effectively inhibited MAO-B (IC50 = 7.27 µM) followed by 5 (IC50 = 9.21 µM). All five compounds weakly inhibited BChE and BACE-1. Compounds 3, 4, and 5 reversibly and competitively inhibited AChE, and were slightly or non-toxic to MDCK cells. The binding energies of 3 and 4 (- 8.5 and - 9.2 kcal/mol, respectively) for AChE were greater than that of 5 (- 8.3 kcal/mol), and 3 and 4 formed a hydrogen bond with Tyr124 in AChE. These results suggest 3 is a dual-targeting inhibitor of AChE and MAO-B, and that these compounds should be viewed as potential therapeutics for the treatment of Alzheimer's disease.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Ácido Elágico/aislamiento & purificación , Ácido Elágico/farmacología , Fagaceae/química , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Animales , Bioensayo , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fraccionamiento Químico , Inhibidores de la Colinesterasa/farmacocinética , Diálisis , Perros , Electrophorus , Ácido Elágico/farmacocinética , Células HL-60 , Humanos , Enlace de Hidrógeno , Cinética , Células de Riñón Canino Madin Darby , Metanol , Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa/farmacocinética , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química
8.
Chemosphere ; 277: 130330, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33780678

RESUMEN

Biocidal products are broadly used in homes and industries. However, the safety of biocidal active substances (BASs) is not yet fully understood. In particular, the neurotoxic action of BASs needs to be studied as diverse epidemiological studies have reported associations between exposure to BASs and neural diseases. In this study, we developed in silico models to predict the blood-brain barrier (BBB) permeation of organic and inorganic BASs. Due to a lack of BBB data for BASs, the chemical space of BASs and BBB dataset were compared in order to select BBB data that were structurally similar to BASs. In silico models to predict log-scaled BBB penetration were developed using support vector regression for organic BASs and multiple linear regression for inorganic BASs. The model for organic BASs was developed with 231 compounds (training set: 153 and test set: 78) and achieved good prediction accuracy on an external test set (R2 = 0.64), and the model outperformed the model for pharmaceuticals. The model for inorganic BASs was developed with 11 compounds (R2 = 0.51). Applicability domain (AD) analysis of the models clarified molecular structures reliably predicted by the models. Therefore, the models developed in this study can be used for predicting BBB permeable BASs in human. These models were developed according to the Quantitative Structure-Activity Relationship validation principles proposed by the Organization for Economic Cooperation and Development.


Asunto(s)
Barrera Hematoencefálica , Relación Estructura-Actividad Cuantitativa , Transporte Biológico , Simulación por Computador , Humanos , Permeabilidad
9.
J Fungi (Basel) ; 7(2)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530616

RESUMEN

Inhibitory activities against monoamine oxidases (MAOs) and cholinesterases (ChEs) and antioxidant activity were evaluated for 195 extracts from Ukraine-derived endogenous lichen fungi (ELF). Among them, an ELF13 (identified as Daldinia fissa) extract showed the highest inhibitory activity against MAO-B, and 5-hydroxy-2-methyl-chroman-4-one (HMC) was isolated as a ~ 4-fold selective inhibitor of MAO-B (IC50 = 3.23 µM) compared to MAO-A (IC50 = 13.97 µM). HMC is a reversible competitive inhibitor with a Ki value of 0.896 µM. No cytotoxicity was observed in normal and cancer cells at 50 µM of HMC. HMC showed blood-brain barrier permeability and high gastrointestinal absorption in silico pharmacokinetics. The docking simulation results showed that the binding affinity of HMC for MAO-B (-7.3 kcal/mol) was higher than that of MAO-A (-6.1 kcal/mol) and that HMC formed a hydrogen bond interaction with Cys172 of MAO-B (distance: 3.656 Å), whereas no hydrogen bonding was predicted with MAO-A. These results suggest that HMC can be considered a candidate for the treatment of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease.

10.
Sci Rep ; 10(1): 21695, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303801

RESUMEN

Cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors have been attracted as candidate treatments for Alzheimer's disease (AD). Fifteen khellactone-type coumarins from the roots of Peucedanum japonicum Thunberg were tested for acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and MAO inhibitory activities. Compound 3'-angeloyl-4'-(2-methylbutyryl)khellactone (PJ13) most potently inhibited AChE (IC50 = 9.28 µM), followed by 3'-isovaleryl-4'-(2-methylbutyroyl)khellactone (PJ15) (IC50 = 10.0 µM). Compound senecioyl-4'-angeloyl-khellactone (PJ5) most potently inhibited BChE (IC50 = 7.22 µM) and had the highest selectivity index (> 5.54), followed by 3'-senecioyl-4'-(2-methylbutyryl)khellactone (PJ10) and 3',4'-disenecioylkhellactone (PJ4) (IC50 = 10.2 and 10.7 µM, respectively). Compounds PJ13, PJ15, and PJ5 showed reversible and mixed-types of inhibition with Ki values of 5.98, 10.4 (for AChE), and 4.16 µM (for BChE), respectively. However, all 15 compounds weakly inhibited MAO-A and MAO-B. Molecular docking simulation revealed that PJ13 had a higher binding affinity (- 9.3 kcal/mol) with AChE than PJ15 (- 7.8 kcal/mol) or PJ5 (- 5.4 kcal/mol), due to the formation of a hydrogen bond with Tyr121 (distance: 2.52 Å). On the other hand, the binding affinity of PJ5 (- 10.0 kcal/mol) with BChE was higher than for PJ13 (- 7.7 kcal/mol) or PJ15 (- 8.1 kcal/mol), due to the formation of a hydrogen bond with Ser198 (distance: 2.05 Å). These results suggest that PJ13 and PJ5 are potential reversible selective inhibitors of AChE and BChE, respectively, for the treatment of AD.


Asunto(s)
Acetilcolinesterasa , Apiaceae/química , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Cumarinas/aislamiento & purificación , Cumarinas/farmacología , Cumarinas/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
11.
Molecules ; 25(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906766

RESUMEN

We evaluated the anti-inflammatory effects of SNAH in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by performing nitric oxide (NO) assays, cytokine enzyme-linked immunosorbent assays, Western blotting, and real-time reverse transcription-polymerase chain reaction analysis. SNAH inhibited the production of NO (nitric oxide), reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, and interleukin (IL)-6. Additionally, 100 µM SNAH significantly inhibited total NO and ROS inhibitory activity by 93% (p < 0.001) and 34% (p < 0.05), respectively. Protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) stimulated by LPS were also decreased by SNAH. Moreover, SNAH significantly (p < 0.001) downregulated the TNF-α, IL-6, and iNOS mRNA expression upon LPS stimulation. In addition, 3-100 µM SNAH was not cytotoxic. Docking simulations and enzyme inhibitory assays with COX-2 revealed binding scores of -6.4 kcal/mol (IC50 = 47.8 µM) with SNAH compared to -11.1 kcal/mol (IC50 = 0.45 µM) with celecoxib, a known selective COX-2 inhibitor. Our results demonstrate that SNAH exerts anti-inflammatory effects via suppression of ROS and NO by COX-2 inhibition. Thus, SNAH may be useful as a pharmacological agent for treating inflammation-related diseases.


Asunto(s)
Acroleína/análogos & derivados , Antiinflamatorios/farmacología , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Acroleína/química , Acroleína/farmacología , Animales , Antiinflamatorios/química , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Citocinas/metabolismo , Depuradores de Radicales Libres/farmacología , Expresión Génica , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
12.
Molecules ; 25(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859055

RESUMEN

Eight compounds were isolated from the roots of Glycyrrhiza uralensis and tested for cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activities. The coumarin glycyrol (GC) effectively inhibited butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) with IC50 values of 7.22 and 14.77 µM, respectively, and also moderately inhibited MAO-B (29.48 µM). Six of the other seven compounds only weakly inhibited AChE and BChE, whereas liquiritin apioside moderately inhibited AChE (IC50 = 36.68 µM). Liquiritigenin (LG) potently inhibited MAO-B (IC50 = 0.098 µM) and MAO-A (IC50 = 0.27 µM), and liquiritin, a glycoside of LG, weakly inhibited MAO-B (>40 µM). GC was a reversible, noncompetitive inhibitor of BChE with a Ki value of 4.47 µM, and LG was a reversible competitive inhibitor of MAO-B with a Ki value of 0.024 µM. Docking simulations showed that the binding affinity of GC for BChE (-7.8 kcal/mol) was greater than its affinity for AChE (-7.1 kcal/mol), and suggested that GC interacted with BChE at Thr284 and Val288 by hydrogen bonds (distances: 2.42 and 1.92 Å, respectively) beyond the ligand binding site of BChE, but that GC did not form hydrogen bond with AChE. The binding affinity of LG for MAO-B (-8.8 kcal/mol) was greater than its affinity for MAO-A (-7.9 kcal/mol). These findings suggest GC and LG should be considered promising compounds for the treatment of Alzheimer's disease with multi-targeting activities.


Asunto(s)
Butirilcolinesterasa/química , Inhibidores de la Colinesterasa , Cumarinas , Flavanonas , Glycyrrhiza uralensis/química , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa/química , Animales , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/aislamiento & purificación , Cumarinas/química , Cumarinas/aislamiento & purificación , Electrophorus , Flavanonas/química , Flavanonas/aislamiento & purificación , Humanos , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/aislamiento & purificación
13.
PLoS One ; 15(4): e0231049, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32287277

RESUMEN

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that has attracted global attention and international awareness. ZIKV infection exhibits mild symptoms including fever and pains; however, ZIKV has recently been shown to be related to increased birth defects, including microcephaly, in infants. In addition, ZIKV is related to the onset of neurological disorders, such as a type of paralysis similar to Guillain-Barré syndrome. However, the mechanisms through which ZIKV affect neuronal cells and myeloid dendritic cells and how ZIKV avoids host immunity are unclear. Accordingly, in this study, we analyzed RNA sequencing data from ZIKV-infected neuronal cells and myeloid dendritic cells by comparative network analyses using protein-protein interaction information. Comparative network analysis revealed major genes showing differential changes in the peripheral neurons, neural crest cells, and myeloid dendritic cells after ZIKV infection. The genes were related to DNA repair systems and prolactin signaling as well as the interferon signaling, neuroinflammation, and cell cycle pathways. These pathways were interconnected by the interaction of proteins in the pathway and significantly regulated by ZIKV infection in neuronal cells and myeloid dendritic cells. Our analysis showed that neuronal cell damage occurred through up-regulation of neuroinflammation and down-regulation of the DNA repair system, but not in myeloid dendritic cells. Interestingly, immune escape by ZIKV infection could be caused by downregulation of prolactin signaling including IRS2, PIK3C3, JAK3, STAT3, and IRF1 as well as mitochondria dysfunction and oxidative phosphorylation in myeloid dendritic cells. These findings provide insight into the mechanisms of ZIKV infection in the host and the association of ZIKV with neurological and immunological symptoms, which may facilitate the development of therapeutic agents and vaccines.


Asunto(s)
Células Dendríticas/virología , Regulación Viral de la Expresión Génica , Células Mieloides/virología , Neuronas/virología , Infección por el Virus Zika/metabolismo , Virus Zika , Células Dendríticas/metabolismo , Humanos , Células Mieloides/metabolismo , Neuronas/metabolismo , Transcripción Genética
14.
Front Pharmacol ; 11: 67, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116729

RESUMEN

Drug-induced liver injury (DILI) is one of the major reasons for termination of drug development. Due to the importance of predicting DILI in early phases of drug development, diverse in silico models have been developed to filter out DILI-causing candidates before clinical study. However, no computational models have achieved sufficient prediction power for screening DILI in early phases because 1) drugs often cause liver injury through reactive metabolites, 2) different clinical outcomes of DILI have different mechanisms, and 3) the DILI label on drugs is not clearly defined. In this study, we developed binary classification models to predict drug-induced cholestasis, cirrhosis, hepatitis, and steatosis based on the structure of drugs and their metabolites. DILI-positive data was obtained from post-market reports of drugs and DILI-negative data from DILIrank, a database curated by the Food and Drug Administration (FDA). Support vector machine (SVM) and random forest (RF) were used in developing models with nine fingerprints and one 2D molecular descriptor calculated from drug (152 DILI-positives and 102 DILI-negatives) and drug metabolite (192 DILI-positives and 126 DILI-negatives) structures. Models were developed according to Organisation for Economic Co-operation and Development (OECD) guidelines for quantitative structure-activity relationship (QSAR) validation. Internal and external validation was performed with a randomization test in order to thoroughly examine model predictability and avoid random correlation between structural features and adverse outcomes. The applicability domain was defined with a leverage method for reliable prediction of new chemicals. The best models for each liver disease were selected based on external validation results from drugs (cholestasis: 70%, cirrhosis: 90%, hepatitis: 83%, and steatosis: 85%) and drug metabolites (cholestasis: 86%, cirrhosis: 88%, hepatitis: 86%, and steatosis: 83%) with applicability domain analysis. Compiled data sets were further exploited to derive privileged substructures that were more frequent in DILI-positive sets compared to DILI-negative sets and in drug metabolite structures compared to drug structures with a Morgan fingerprint level 2.

15.
Int J Biol Macromol ; 151: 441-448, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32087226

RESUMEN

Nineteen compounds were isolated from the stems of Maackia amurensis by activity-guided screening for new human monoamine oxidase-B (hMAO-B) inhibitors. Among the compounds isolated, flavonoids calycosin (5) and 8-O-methylretusin (6) were found to potently and selectively inhibit hMAO-B (IC50 = 0.24 and 0.23 µM, respectively) but not hMAO-A with high selectivity index (SI) values (SI = 293.8 and 81.3, respectively). In addition, 5 and 6 reversibly and competitively inhibited hMAO-B with Ki values of 0.057 and 0.054 µM, respectively. A pterocarpan (-)-medicarpin (18) was also observed to strongly inhibit hMAO-B (IC50 = 0.30 µM). Most of the compounds weakly inhibited AChE, except isolupalbigenin (13) (IC50 = 20.6 µM), which suggested 13 be considered a potential dual function inhibitor of MAO-B and AChE. Molecular docking simulation revealed that the binding affinities of 5 and 6 for hMAO-B (both -9.3 kcal/mol) were higher than those for hMAO-A (-7.4 and -7.2 kcal/mol, respectively). Compound 5 was found to interact by hydrogen bonding with hMAO-B at Cys172 residue (distance: 3.250 Å); no hydrogen bonding was predicted between 5 and hMAO-A. These findings suggest that compounds 5 and 6 be considered novel potent, selective, and reversible hMAO-B inhibitors and candidates for the treatment of neurological disorders.


Asunto(s)
Isoflavonas/química , Isoflavonas/farmacología , Maackia/química , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Extractos Vegetales/farmacología , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Humanos , Isoflavonas/aislamiento & purificación , Cinética , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Inhibidores de la Monoaminooxidasa/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Relación Estructura-Actividad
16.
Curr Pharm Biotechnol ; 21(2): 169-178, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31612825

RESUMEN

BACKGROUND: Melanin protects the skin against the harmful effects of ultraviolet irradiation. However, melanin overproduction can result in several aesthetic problems, including melasma, freckles, age spots and chloasma. Therefore, development of anti-melanogenic agents is important for the prevention of serious hyperpigmentation diseases. Sesamolin is a lignan compound isolated from sesame seeds with several beneficial properties, including potential for melanin inhibition. OBJECTIVE: The aim of this study was to evaluate the anti-melanogenic effect of sesamolin in cell culture in vitro and the underlying mechanism of inhibition using molecular docking simulation. METHODS: Melanogenesis was induced by 3-isobutyl-1-methylxanthine in B16F10 melanoma cells, and the inhibitory effects of sesamolin were evaluated using zymography, a tyrosinase inhibitory activity assay, western blotting, and real-time reverse transcription-polymerase chain reaction analysis. Docking simulations between sesamolin and tyrosinase were performed using Autodock vina. RESULTS: Sesamolin significantly inhibited the expression of melanogenesis-related factors tyrosinase, and tyrosinase-related proteins 1 and 2 at the mRNA and protein levels. Treatment of melanoma cells with 50 µM sesamolin demonstrated the strongest inhibition against intercellular tyrosinase and melanin synthesis without exerting cytotoxic effects. Sesamolin significantly reduced mushroom tyrosinase activity in a dose-dependent manner via a competitive inhibition mechanism. Tyrosinase docking simulations supported that sesamolin (-6.5 kcal/mol) bound to the active site of tyrosinase more strongly than the positive control (arbutin, -5.7 kcal/mol). CONCLUSION: Sesamolin could be developed as a melanogenesis inhibiting agent owing to its dual function in blocking the generation of melanogenesis-related enzymes and inhibiting the enzymatic response of tyrosinase.


Asunto(s)
Antineoplásicos/farmacología , Dioxoles/farmacología , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Melaninas/biosíntesis , Monofenol Monooxigenasa/antagonistas & inhibidores , Oxidorreductasas/antagonistas & inhibidores , 1-Metil-3-Isobutilxantina , Agaricales/enzimología , Animales , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Dioxoles/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Humanos , Melanoma Experimental/patología , Simulación del Acoplamiento Molecular
17.
Int J Biol Macromol ; 137: 426-432, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31271801

RESUMEN

Six synthetic (1-6) and six natural (7-12) chalcones were tested for human monoamine oxidases (hMAOs) and acetylcholinesterase (AChE) inhibitory activities. Compounds 4-dimethylaminochalcone (2), 4'-chloro-4-dimethylaminochalcone (5), and 2,4'-dichloro-4-dimethylaminochalcone (1) potently inhibited hMAO-B with IC50 values of 0.029, 0.061, and 0.075 µM, respectively. 4-Nitrochalcone (4) and 4-chlorochalcone (3) also potently inhibited hMAO-B with IC50 values of 0.066 and 0.082 µM, respectively (2.3- and 2.6-fold less than compound 2). Compound 2 had a high selectivity index (113.1) for hMAO-B over hMAO-A (IC50 = 3.28 µM). Compounds 1 and 2,2'-dihydroxy-4',6'-dimethoxychalcone (12) potently inhibited hMAO-A with IC50 values of 0.18 and 0.39 µM, respectively. In addition, compounds 4 and 2 also effectively inhibited AChE with IC50 values of 1.25 and 6.07 µM, respectively, and thus, exhibited dual-targeting. Compound 2 reversibly and competitively inhibited hMAO-B with a Ki value of 0.0066 µM. Docking simulations showed binding affinities of compounds 1 to 5 for hMAO-B were higher than those for hMAO-A or AChE and suggested these five chalcones form hydrogen bonds with MAO-B at Cys172 but that they do not form hydrogen bonds with hMAO-A or AChE. These findings suggest compound 2 be considered a promising and dual-targeting lead compound for the treatment of Alzheimer's disease.


Asunto(s)
Chalconas/química , Chalconas/farmacología , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Chalconas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/metabolismo , Conformación Proteica
18.
Bioorg Chem ; 89: 103043, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31200287

RESUMEN

Six hundred forty natural compounds were tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Of those, sargachromanol I (SCI) and G (SCG) isolated from the brown alga Sargassum siliquastrum, dihydroberberine (DB) isolated from Coptis chinensis, and macelignan (ML) isolated from Myristica fragrans, potently and effectively inhibited AChE with IC50 values of 0.79, 1.81, 1.18, and 4.16 µM, respectively. SCI, DB, and ML reversibly inhibited AChE and showed mixed, competitive, and noncompetitive inhibition, respectively, with Ki values of 0.63, 0.77, and 4.46 µM, respectively. Broussonin A most potently inhibited BChE (IC50 = 4.16 µM), followed by ML, SCG, and SCI (9.69, 10.79, and 13.69 µM, respectively). In dual-targeting experiments, ML effectively inhibited monoamine oxidase B with the greatest potency (IC50 = 7.42 µM). Molecular docking simulation suggested the binding affinity of SCI (-8.6 kcal/mol) with AChE was greater than those of SCG (-7.9 kcal/mol) and DB (-8.2 kcal/mol). Docking simulation indicated SCI interacts with AChE at Trp81, and that SCG interacts at Ser119. No hydrogen bond was predicted for the interaction between AChE and DB. This study suggests SCI, SCG, DB, and ML be viewed as new reversible AChE inhibitors and useful lead compounds for the development for the treatment of Alzheimer's disease.


Asunto(s)
Acetilcolinesterasa/metabolismo , Benzopiranos/farmacología , Productos Biológicos/farmacología , Inhibidores de la Colinesterasa/farmacología , Alcoholes Grasos/farmacología , Sargassum/química , Anemarrhena/química , Animales , Benzopiranos/química , Benzopiranos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Electrophorus , Alcoholes Grasos/química , Alcoholes Grasos/aislamiento & purificación , Caballos , Humanos , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Monoaminooxidasa/metabolismo , Myristica/química , Relación Estructura-Actividad
19.
Bioorg Med Chem Lett ; 29(6): 839-843, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30686752

RESUMEN

Osthenol (6), a prenylated coumarin isolated from the dried roots of Angelica pubescens, potently and selectively inhibited recombinant human monoamine oxidase-A (hMAO-A) with an IC50 value of 0.74 µM and showed a high selectivity index (SI > 81.1) for hMAO-A versus hMAO-B. Compound 6 was a reversible competitive hMAO-A inhibitor (Ki = 0.26 µM) with a potency greater than toloxatone (IC50 = 0.93 µM), a marketed drug. Isopsoralen (3) and bakuchicin (1), furanocoumarin derivatives isolated from Psoralea corylifolia L., showed slightly higher IC50 values (0.88 and 1.78 µM, respectively) for hMAO-A than 6, but had low SI values (3.1 for both). Other coumarins tested did not effectively inhibit hMAO-A or hMAO-B. A structural comparison suggested that the 8-(3,3-dimethylallyl) group of 6 increased its inhibitory activity against hMAO-A compared with the 6-methoxy group of scopoletin (4). Molecular docking simulations revealed that the binding affinity of 6 for hMAO-A (-8.5 kcal/mol) was greater than that for hMAO-B (-5.6 kcal/mol) and that of 4 for hMAO-A (-7.3 kcal/mol). Docking simulations also implied that 6 interacted with hMAO-A at Phe208 and with hMAO-B at Ile199 by carbon hydrogen bondings. Our findings suggest that osthenol, derived from natural products, is a selective and potent reversible inhibitor of MAO-A, and can be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors.


Asunto(s)
Cumarinas/química , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/química , Acetilcolinesterasa/química , Dominio Catalítico , Inhibidores de la Colinesterasa/química , Cumarinas/metabolismo , Pruebas de Enzimas , Humanos , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/metabolismo , Unión Proteica , Relación Estructura-Actividad
20.
Ann Dermatol ; 31(5): 530-537, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33911645

RESUMEN

BACKGROUND: Androgenic alopecia (AGA) is the most common type of hair loss. It is likely inherited genetically and is promoted by dihydrotestosterone. 5α-reductase has been proven a good target through finasteride use. However, the pathogenesis of AGA cannot be fully explained based only on dihydrotestosterone levels. OBJECTIVE: To identify similar hairloss inhibition activity of RE-ORGA with mode of action other than finasteride. METHODS: We prepared RE-ORGA from Korean herb mixtures. We performed MTT assays for cytotoxicity, Cell Counting Kit-8 assays for cell proliferation, and western blot to identify expression levels of 5α-reductase and Bax. RNA-sequencing was performed for the expression patterns of genes in dihydrotestosterone-activated pathways. Anti-inflammatory activity was also assessed by the expression levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6. RESULTS: REORGA could promote the proliferation of human dermal papilla cells and showed low cytotoxicity. It also inhibited the expression of 5α-reductases and Bax in the cells. RNA-sequencing results verified that the mRNA expressions of SRD5A1, Bax, transforming growth factor-beta 1 (TGF-ß1), and TGF-ß1 induced transcript 1 (TGFß1I1) were decreased, whereas expression of protein tyrosine kinase 2 beta (PTK2ß) was more elevated. REORGA also showed anti-inflammatory activity through decreased mRNA levels of TNF-α. CONCLUSION: Transcriptionally, up-regulation of PTK2ß and concomitant down-regulation of TGFß1I1 imply that RE-ORGA can modulate androgen receptor sensitivity, decreasing the expression of 5α-reductase type II and Bax together with TGF-ß1 transcripts; RE-ORGA also showed partial anti-inflammatory activity. Overall, RE-ORGA is expected to alleviate hair loss by regulating 5α-reductase activity and the receptor's androgen sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA