Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 931: 172923, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38701929

RESUMEN

The identification of nitrate sources in reservoir water is important for watershed-scale surface pollution management. Significant fluctuations in river water levels arising from reservoir storage and discharge influence nitrate sources and transport processes. The Sanmenxia Reservoir, in the middle reaches of the Yellow River in China, undergoes significant water level changes (290-316 m), altering the composition of the nitrogen sources. This study employed a δ15N and δ18O dual-isotope method and MixSIAR modeling to quantify the contributions of nitrate sources. This reveals the impact of reservoir water impoundment and discharge on nitrogen dynamics in the upstream region of the wetland and the model sensitivity for each nitrate source. The results showed that the average concentrations of nitrate­nitrogen (NO- 3-N) were elevated during the impoundment period compared to the discharge period. Nitrogen sources exhibited varying proportions in surface water, groundwater, and soil water during both the impoundment and discharge periods. The predominant sources include manure and sewage (MS), with a maximum proportion of 57.4 % in surface water. Soil nitrogen (SN) accounted for 25.8 % of groundwater nitrogen and 32.1 % of soil water nitrogen during the impoundment period, whereas, during the discharge period, soil nitrogen made up 41.4 % of surface water nitrogen, manure and sewage contributed 44.8 % of groundwater nitrogen, and manure and sewage dominated with 56.7 % of soil water nitrogen. Sensitivity analysis of the MixSIAR model revealed that the isotopic composition of the manure and sewage primary source most significantly influenced the apportionment results of the riverine nitrate source. Reservoir discharge facilitates the dissimilatory nitrate reduction to ammonium (DNRA). The migration of NO- 3 from surface water to soil water and groundwater occurred from the impoundment period to the discharge period.

2.
Environ Sci Pollut Res Int ; 28(6): 7076-7089, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33025438

RESUMEN

Underground cutoff walls are useful in conserving groundwater and preventing seawater intrusion in coastal regions. However, the environmental effects of human activities on groundwater quality in the upstream area of the underground cutoff wall over the long term are not clear. In this study, combined analysis of multiple isotopes (δ15N-NO3-, δ18O-NO3-, δ2H, and δ18O-H2O) and nitrate concentrations was used to assess the effect of underground cutoff walls on nitrogen dynamics in groundwater in an agricultural area in China. We sampled groundwater wells in the upstream and downstream areas of the underground walls in April, July, and September. The results indicated that the underground cutoff walls hampered the horizontal groundwater flow, making the upstream groundwater a closed system, which led to an increase in the nitrate concentration and accelerated nitrification processes. Manure was the main nitrate source in the upstream groundwater, and its levels in the groundwater were similar during the three seasons, indicating that there was no difference in the nitrate sources in the upstream groundwater among the three seasons. Hence, further management measures for manure application may be critical for groundwater protection in the upstream area of underground cutoff walls.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Humanos , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis
3.
Isotopes Environ Health Stud ; 53(1): 36-53, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27417027

RESUMEN

Underground cut-off walls in coastal regions are mainly used to prevent saltwater intrusion, but their impact on nutrient dynamics in groundwater is not clear. In this study, a combined analysis of multiple isotopes ([Formula: see text]) and nitrogen and phosphorus concentrations is used in order to assess the impact of the underground cut-off walls on the nutrient dynamics in groundwater in the lower Wang River watershed, China. Compared with the nitrogen and phosphorus concentrations in groundwater downstream of the underground cut-off walls, high [Formula: see text] and total dissolved nitrogen concentrations and similar concentration levels of [Formula: see text] and total dissolved phosphorus are found in groundwater upstream of the underground cut-off walls. The isotopic data indicated the probable occurrence of denitrification and nitrification processes in groundwater upstream, whereas the fingerprint of these processes was not shown in groundwater downstream. The management of fertilizer application is critical to control nitrogen concentrations in groundwater restricted by the underground cut-off walls.


Asunto(s)
Agua Subterránea/análisis , Nitratos/análisis , Nitrógeno/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Isótopos de Nitrógeno/análisis
4.
Environ Sci Pollut Res Int ; 23(2): 1133-48, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26541149

RESUMEN

Nitrate contamination of water is a worldwide environmental problem. Recent studies have demonstrated that the nitrogen (N) and oxygen (O) isotopes of nitrate (NO3(-)) can be used to trace nitrogen dynamics including identifying nitrate sources and nitrogen transformation processes. This paper analyzes the current state of identifying nitrate sources and nitrogen transformation processes using N and O isotopes of nitrate. With regard to nitrate sources, δ(15)N-NO3(-) and δ(18)O-NO3(-) values typically vary between sources, allowing the sources to be isotopically fingerprinted. δ(15)N-NO3(-) is often effective at tracing NO(-)3 sources from areas with different land use. δ(18)O-NO3(-) is more useful to identify NO3(-) from atmospheric sources. Isotopic data can be combined with statistical mixing models to quantify the relative contributions of NO3(-) from multiple delineated sources. With regard to N transformation processes, N and O isotopes of nitrate can be used to decipher the degree of nitrogen transformation by such processes as nitrification, assimilation, and denitrification. In some cases, however, isotopic fractionation may alter the isotopic fingerprint associated with the delineated NO3(-) source(s). This problem may be addressed by combining the N and O isotopic data with other types of, including the concentration of selected conservative elements, e.g., chloride (Cl(-)), boron isotope (δ(11)B), and sulfur isotope (δ(35)S) data. Future studies should focus on improving stable isotope mixing models and furthering our understanding of isotopic fractionation by conducting laboratory and field experiments in different environments.


Asunto(s)
Nitratos/análisis , Contaminantes Químicos del Agua/química , Desnitrificación , Monitoreo del Ambiente , Nitrificación , Isótopos de Nitrógeno/química , Isótopos de Oxígeno/química
5.
Environ Sci Pollut Res Int ; 23(2): 1300-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26358214

RESUMEN

Reclamation along coastal zones is a method that has been used to relieve the problems of strained resources and land. Aquaculture, as one of the major man-made activities in reclamation areas, has an environmental impact on coastal waters. The effluents from aquaculture ponds are known to enrich the levels of nutrients such as nitrogen and phosphate. The goals of the present study are to evaluate the environmental impact of mariculture on coastal waters in the east coast of Laizhou Bay, China, and to identify the nitrate sources. Monitoring the concentrations of dissolved nitrogen and phosphate was used to assess their impact on the water quality of coastal waters. A dual isotope (δ(15)N-NO3(-) and δ(18)O-NO3(-)) approach was used to identify the nitrate sources. Higher dissolved nitrogen concentrations (NH4(+) and NO3(-)) than PO4(3-) concentrations associated with enriched δ(15)N-NO3(-) values were observed in the drainage channels, sea cucumber ponds, and groundwater, which indicated that aquaculture activity has more influence on nitrogen nutrients than on phosphate nutrients. In this coastal area with seawater intrusion, nitrogen released from sea cucumber ponds accumulated in nearshore water and migrated in the offshore direction in groundwater currents. This behavior results in nitrogen enrichment in groundwater within the hinterland. Isotopic data indicate that mixing of multiple nitrate sources exists in groundwater, and nitrogen from mariculture is the main source.


Asunto(s)
Agua Subterránea/análisis , Nitratos/análisis , Agua de Mar/análisis , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Isótopos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...