Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 171: 108200, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38428099

RESUMEN

BACKGROUND: The COVID-19 pandemic caused by SARS-CoV-2 has led to significant global morbidity and mortality, with potential neurological consequences, such as Parkinson's disease (PD). However, the underlying mechanisms remain elusive. METHODS: To address this critical question, we conducted an in-depth transcriptome analysis of dopaminergic (DA) neurons in both COVID-19 and PD patients. We identified common pathways and differentially expressed genes (DEGs), performed enrichment analysis, constructed protein‒protein interaction networks and gene regulatory networks, and employed machine learning methods to develop disease diagnosis and progression prediction models. To further substantiate our findings, we performed validation of hub genes using a single-cell sequencing dataset encompassing DA neurons from PD patients, as well as transcriptome sequencing of DA neurons from a mouse model of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. Furthermore, a drug-protein interaction network was also created. RESULTS: We gained detailed insights into biological functions and signaling pathways, including ion transport and synaptic signaling pathways. CD38 was identified as a potential key biomarker. Disease diagnosis and progression prediction models were specifically tailored for PD. Molecular docking simulations and molecular dynamics simulations were employed to predict potential therapeutic drugs, revealing that genistein holds significant promise for exerting dual therapeutic effects on both PD and COVID-19. CONCLUSIONS: Our study provides innovative strategies for advancing PD-related research and treatment in the context of the ongoing COVID-19 pandemic by elucidating the common pathogenesis between COVID-19 and PD in DA neurons.


Asunto(s)
COVID-19 , Enfermedad de Parkinson , Animales , Ratones , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , Simulación del Acoplamiento Molecular , Pandemias , SARS-CoV-2 , Modelos Animales de Enfermedad
2.
Exp Neurol ; 371: 114607, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37935323

RESUMEN

Delayed recanalization at days or weeks beyond the therapeutic window was shown to improve functional outcomes in acute ischemic stroke (AIS) patients. However, the underlying mechanisms remain unclear. Previous preclinical study reported that trefoil factor 3 (TFF3) was secreted by liver after cerebral ischemia and acted a distant neuroprotective factor. Here, we investigated the liver-derived TFF3-mediated neuroprotective mechanism enhanced by delayed recanalization after AIS. A total of 327 male Sprague-Dawley rats and the model of middle cerebral artery occlusion (MCAO) with permanent occlusion (pMCAO) or with delayed recanalization at 3 d post-occlusion (rMCAO) were used. Partial hepatectomy was performed within 5 min after MCAO. Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2) siRNA was administered intracerebroventricularly at 48 h after MCAO. Recombinant rat TFF3 (rr-TFF3, 30 µg/Kg) or recombinant rat epidermal growth factor (rr-EGF, 100 µg/Kg) was administered intranasally at 1 h after recanalization, and EGFR inhibitor Gefitinib (75 mg/Kg) was administered intranasally at 30 min before recanalization. The evaluation of outcomes included neurobehavior, ELISA, western blot and immunofluorescence staining. TFF3 in hepatocytes and serum were upregulated in a similar time-dependent manner after MCAO. Compared to pMCAO, delayed recanalization increased brain TFF3 levels and attenuated brain damage with the reduction in neuronal apoptosis, infarct volume and neurological deficits. Partial hepatectomy reduced TFF3 levels in serum and ipsilateral brain hemisphere, and abolished the benefits of delayed recanalization on neuronal apoptosis and neurobehavioral deficits in rMCAO rats. Intranasal rrTFF3 treatment reversed the changes associated with partial hepatectomy. Delayed recanalization after MCAO increased the co-immunoprecipitation of TFF3 and LINGO2, as well as expressions of p-EGFR, p-Src and Bcl-2 in the brain. LINGO2 siRNA knockdown or EGFR inhibitor reversed the effects of delayed recanalization on apoptosis and brain expressions of LINGO2, p-EGFR, p-Src and Bcl-2 in rMCAO rats. EGFR activator abolished the deleterious effects of LINGO2 siRNA. In conclusion, our investigation demonstrated for the first time that delayed recanalization may enhance the entry of liver-derived TFF3 into ischemic brain upon restoring blood flow after MCAO, which attenuated neuronal apoptosis and neurological deficits at least in part via activating LINGO2/EGFR/Src pathway.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Humanos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Neuroprotección , Infarto de la Arteria Cerebral Media/metabolismo , Factor Trefoil-3/farmacología , Factor Trefoil-3/uso terapéutico , Transducción de Señal , Apoptosis , Receptores ErbB/metabolismo , Receptores ErbB/farmacología , Receptores ErbB/uso terapéutico , Hígado , ARN Interferente Pequeño/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
3.
NPJ Parkinsons Dis ; 9(1): 117, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491350

RESUMEN

Peripheral immune cells play a vital role in the development of Parkinson's disease (PD). However, their cytokine and chemokine secretion functions remain unclear. Therefore, we aimed to explore the cytokine and chemokine secretion functions of specific immune cell subtypes in drug-naïve patients with PD at different ages of onset. We included 10 early-onset and 10 late-onset patients with PD and age-matched healthy controls (HCs). We used mass cytometry to select specific immune cell subsets and evaluate intracellular cytokine and chemokine expression. Statistical tests included t-tests, analysis of variance, bivariate correlation analysis, and linear regression analysis. Compared with HCs, patients with PD exhibited significantly decreased intracellular pro-inflammatory cytokines and chemokines in selected clusters (e.g., tumor necrosis factor (TNF)-α, interleukin (IL)-8, IL-1ß, and CC-chemokine ligand (CCL)17). Specific cytokines and cell clusters were associated with clinical symptoms. TNF-α played an important role in cognitive impairment. Intracellular TNF-α levels in the naïve CD8+ T-cell cluster C16 (CD57- naïve CD8+ T) and natural killer (NK) cell cluster C32 (CD57- CD28- NK) were negatively correlated with Montreal Cognitive Assessment scores. The C16 cluster affected cognitive function and motor symptoms. Increased TNF-α and decreased interferon-γ expression in C16 correlated with increased Unified Parkinson's Disease Rating Scale III scores in patients with PD. In summary, we developed a more detailed cytokine and chemokine map of peripheral specific CD8+ T cell and NK cell subsets, which revealed disrupted secretory function in patients with PD and provided unique clues for further mechanistic exploration.

4.
BMC Plant Biol ; 23(1): 330, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344795

RESUMEN

BACKGROUND: Flooding is among the most severe abiotic stresses in plant growth and development. The mechanism of submergence tolerance of cotton in response to submergence stress is unknown. RESULTS: The transcriptome results showed that a total of 6,893 differentially expressed genes (DEGs) were discovered under submergence stress. Gene Ontology (GO) enrichment analysis showed that DEGs were involved in various stress or stimulus responses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs related to plant hormone signal transduction, starch and sucrose metabolism, glycolysis and the biosynthesis of secondary metabolites were regulated by submergence stress. Eight DEGs related to ethylene signaling and 3 ethylene synthesis genes were identified in the hormone signal transduction. For respiratory metabolism, alcohol dehydrogenase (ADH, GH_A02G0728) and pyruvate decarboxylase (PDC, GH_D09G1778) were significantly upregulated but 6-phosphofructokinase (PFK, GH_D05G0280), phosphoglycerate kinase (PGK, GH_A01G0945 and GH_D01G0967) and sucrose synthase genes (SUS, GH_A06G0873 and GH_D06G0851) were significantly downregulated in the submergence treatment. Terpene biosynthetic pathway-related genes in the secondary metabolites were regulated in submergence stress. CONCLUSIONS: Regulation of terpene biosynthesis by respiratory metabolism may play a role in enhancing the tolerance of cotton to submergence under flooding. Our findings showed that the mevalonate pathway, which occurs in the cytoplasm of the terpenoid backbone biosynthesis pathway (ko00900), may be the main response to submergence stress.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Metabolismo de los Hidratos de Carbono/genética , Estrés Fisiológico/genética , Etilenos , Regulación de la Expresión Génica de las Plantas
5.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37239999

RESUMEN

DNA damage and defective DNA repair are extensively linked to neurodegeneration in Parkinson's disease (PD), but the underlying molecular mechanisms remain poorly understood. Here, we determined that the PD-associated protein DJ-1 plays an essential role in modulating DNA double-strand break (DSB) repair. Specifically, DJ-1 is a DNA damage response (DDR) protein that can be recruited to DNA damage sites, where it promotes DSB repair through both homologous recombination and nonhomologous end joining. Mechanistically, DJ-1 interacts directly with PARP1, a nuclear enzyme essential for genomic stability, and stimulates its enzymatic activity during DNA repair. Importantly, cells from PD patients with the DJ-1 mutation also have defective PARP1 activity and impaired repair of DSBs. In summary, our findings uncover a novel function of nuclear DJ-1 in DNA repair and genome stability maintenance, and suggest that defective DNA repair may contribute to the pathogenesis of PD linked to DJ-1 mutations.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Reparación del ADN por Unión de Extremidades , Daño del ADN , Mutación , Inestabilidad Genómica , Poli(ADP-Ribosa) Polimerasa-1/genética
6.
Sensors (Basel) ; 23(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36617046

RESUMEN

Magnetic fingerprint has a multitude of advantages in the application of indoor positioning, but as a weak magnetic field, the dynamic range of the data is limited, which exerts direct influence on the positioning accuracy. Aiming at resolving the problem wherein the indoor magnetic positioning results tremendously rest with the magnetic characteristics, this paper puts forward a method based on deep learning to fuse the temporal and spatial characteristics of magnetic fingerprints, to fully explore the magnetic characteristics and to obtain stable and trustworthy positioning results. First and foremost, the trajectory of the acquisition area is extracted by adopting the ameliorated random waypoint model, and the simulation of pedestrian trajectory is completed. Then, the magnetic sequence is obtained by mapping the magnetic data. Aside from that, considering the scale characteristics of the sequence, a scale transformation unit is designed to obtain multi-scale features. At length, the neural network self-attention mechanism is adopted to fuse multiple features and output the positioning results. By probing into the positioning results of dissimilar indoor scenes, this method can adapt to diverse scenes. The average positioning error in a corridor, open area and complex area reaches 0.65 m, 0.93 m and 1.38 m respectively. The addition of multi-scale features has certain reference value for ameliorating the positioning performance.


Asunto(s)
Campos Magnéticos , Peatones , Humanos , Simulación por Computador , Redes Neurales de la Computación , Fenómenos Físicos
7.
Transl Stroke Res ; 14(2): 250-262, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35867328

RESUMEN

Current approved therapies for acute ischemic stroke have a restricted therapeutic time window. Delayed recanalization, which has been utilized clinically in patients who have missed the time window for administration, may be a promising alternative for stroke patients. However, the underlying molecular mechanisms remain undiscovered. Herein, we hypothesized that delayed recanalization would increase M2 microglial polarization through the IL-4R (interleukin-4 receptor)/STAT6 (signal transducer and activators of transcription 6)/PPARγ (peroxisome proliferator-activated receptor γ) pathway, subsequently promoting stroke recovery in rats. The permanent middle cerebral artery occlusion (pMCAO) model was induced via intravascular filament insertion. Recanalization was induced by withdrawing the filament at 3 days after MCAO (rMCAO). Interleukin (IL)-4 was administered intranasally at 3 days after pMCAO. AS1517499, a specific STAT6 inhibitor, was administered intranasally at 3 days after MCAO induction. Immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA), western blot analysis, volumetric measurements of brain infarct, and neurological behavior tests were conducted. Delayed recanalization at 3 days after MCAO increased the polarization of M2 microglia, decreased inflammation, and improved neurological behavior. IL-4 treatment administered on the 3rd day after pMCAO increased M2 microglial polarization, improved neurological behavior, and reduced infarction volume of pMCAO rats. The inhibition of STAT6 decreased the level of p-STAT6 and PPARγ in rats treated with delayed recanalization. Delayed recanalization improved neurological function by increasing microglial M2 polarization, possibly involved with the IL-4R/STAT6/PPARγ pathway after MCAO in rats.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Infarto de la Arteria Cerebral Media/metabolismo , Microglía/metabolismo , PPAR gamma , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico
8.
Transl Stroke Res ; 12(3): 382-393, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33215347

RESUMEN

Stroke has become the second most prevalent cause of mortality in the world. Currently, the treatment of ischemic stroke is based on thrombolytic and thrombectomy therapy shortly after the ischemic event (≤ 4.5 h for thrombolytic strategies; ≤ 6 h for thrombectomy strategies). However, the majority of patients are unable to receive prompt treatment, particularly in undeveloped countries. Alternative solutions are lacking for those patients that miss the optimal window of opportunity for treatment. Recently, new developments in imaging techniques and intravascular interventional devices enable the expansion of the window of opportunity for treating stroke patients. Clinical studies have reported that delayed recanalization at 24 h, or even more than 1 month, was beneficial for some patients. However, the mechanisms of neuroprotection that underly the delayed recanalization in these ischemic stroke patients remain unclear. In this review, we will summarize the clinical studies of delayed recanalization, and organize them according to the duration of occlusion. Additionally, we will discuss the changing guidelines and possible mechanisms based on animal research, and attempt to draw conclusions and future perspectives.


Asunto(s)
Isquemia Encefálica , Procedimientos Endovasculares , Accidente Cerebrovascular , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/terapia , Fibrinolíticos/uso terapéutico , Humanos , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/terapia , Trombectomía , Terapia Trombolítica , Resultado del Tratamiento
9.
J Cell Mol Med ; 24(21): 12318-12330, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33034416

RESUMEN

This study aimed to investigate the effects of PPAR-ß/δ receptor agonist GW0742 on neuroinflammation in a rat model of hypoxia-ischaemia (HI) and in PC12 cells in OGD model. HI was induced by ligating the common carotid artery and inducing hypoxia for 150 minutes. Immunofluorescence was used for quantification of microglia activation and for determining cellular localization of PPAR-ß/δ. Expression of proteins was measured by Western blot. Activation of miR-17-5p by GW0742 was assessed in PC12 cells by Dual-Luciferase Reporter Gene Assay. The endogenous expression of TXNIP, NLRP3, cleaved caspase-1 and IL-1ß was increased after HI. GW0742 treatment significantly reduced the number of activated pro-inflammatory microglia in ipsilateral hemisphere after HI. Mechanistically, GW0742 significantly decreased the expression of TXNIP, NLRP3, IL-6 and TNF-α. Either PPAR-ß/δ antagonist GSK3787, miR-17-5p inhibitor, or TXNIP CRISPR activation abolished the anti-inflammatory effects of GW0742. Activation of PPAR-ß/δ by GW0742 activated miR-17-5p expression in PC12 cells and increased cell viability after OGD, which was accompanied by decreased expression of TXNIP and reduced secretion of IL-1ß and TNF-α. In conclusion, GW0742 may be a promising neurotherapeutic for the management of HI patients.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Hipoxia/metabolismo , Inflamación/metabolismo , Isquemia/metabolismo , MicroARNs/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Tiazoles/farmacología , Animales , Glucemia/metabolismo , Supervivencia Celular , Femenino , Glucosa/metabolismo , Inflamasomas , Masculino , Microscopía Fluorescente , Oxígeno/metabolismo , Células PC12 , Ratas , Ratas Sprague-Dawley
10.
Stroke ; 51(11): 3320-3331, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32933418

RESUMEN

BACKGROUND AND PURPOSE: Neuroinflammation has been proven to play an important role in the pathogenesis of early brain injury after subarachnoid hemorrhage (SAH). EZH2 (enhancer of zeste homolog 2)-mediated H3K27Me3 (trimethylation of histone 3 lysine 27) has been recognized to play a critical role in multiple inflammatory diseases. However, there is still a lack of evidence to address the effect of EZH2 on the immune response of SAH. Therefore, the aim of this study was to determine the role of EZH2 in SAH-induced neuroinflammation and explore the effect of EZH2 inhibition with its specific inhibitor EPZ6438. METHODS: The endovascular perforation method was performed on rats to induce subarachnoid hemorrhage. EPZ6438, a specific EZH2 inhibitor, was administered intraperitoneally at 1 hour after SAH. SOCS3 (Suppressor of cytokine signaling 3) siRNA and H3K27me3 CRISPR were administered intracerebroventricularly at 48 hours before SAH to explore potential mechanisms. The SAH grade, short-term and long-term neurobehavioral tests, immunofluorescence staining, and western blots were performed after SAH. RESULTS: The expression of EZH2 and H3K27me3 peaked at 24 hours after SAH. In addition, inhibition of EZH2 with EPZ6438 significantly improved neurological deficits both in short-term and long-term outcome studies. Moreover, EPZ6438 treatment significantly decreased the levels of EZH2, H3K27Me3, pathway-related proteins TRAF6 (TNF [tumor necrosis factor] receptor family 6), NF-κB (nuclear factor-κB) p65, proinflammatory cytokines TNF-α, IL (interleukin)-6, IL-1ß, but increased the expression levels of SOCS3 and anti-inflammatory cytokine IL-10. Furthermore, administration of SOCS3 siRNA and H3k27me3-activating CRISPR partly abolished the neuroprotective effect of EPZ6438, which indicated that the neuroprotective effect of EPZ6438 acted, at least partly, through activation of SOCS3. CONCLUSIONS: In summary, the inhibition of EZH2 by EPZ6438 attenuated neuroinflammation via H3K27me3/SOCS3/TRAF6/NF-κB signaling pathway after SAH in rats. By targeting EZH2, this study may provide an innovative method to ameliorate early brain injury after SAH.


Asunto(s)
Encéfalo/inmunología , Proteína Potenciadora del Homólogo Zeste 2/inmunología , Histonas/metabolismo , Inflamación/inmunología , FN-kappa B/inmunología , Hemorragia Subaracnoidea/inmunología , Proteína 3 Supresora de la Señalización de Citocinas/inmunología , Factor 6 Asociado a Receptor de TNF/inmunología , Animales , Benzamidas/farmacología , Compuestos de Bifenilo , Encéfalo/efectos de los fármacos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Modelos Animales de Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Código de Histonas , Histonas/efectos de los fármacos , Masculino , Microglía/efectos de los fármacos , Microglía/inmunología , Morfolinas , Prueba del Laberinto Acuático de Morris , FN-kappa B/efectos de los fármacos , Infiltración Neutrófila/efectos de los fármacos , Infiltración Neutrófila/inmunología , Piridonas/farmacología , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Prueba de Desempeño de Rotación con Aceleración Constante , Transducción de Señal , Hemorragia Subaracnoidea/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/efectos de los fármacos , Factor 6 Asociado a Receptor de TNF/efectos de los fármacos
11.
Exp Neurol ; 330: 113359, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32428505

RESUMEN

The activation of tyrosine kinase receptor c-Met by hepatocyte growth factor (HGF) showed an anti-apoptotic effect in numerous disease models. This study aimed to investigate the neuroprotective mechanism of the HGF/c-Met axis-mediated anti-apoptosis underlying the delayed recanalization in a rat model of middle cerebral artery occlusion (MCAO). Permanent MCAO model (pMCAO) was induced by intravascular filament insertion. Recanalization was induced by withdrawing the filament at 3 days after MCAO (rMCAO). HGF levels in the blood serum and brain tissue expressions of HGF, c-Met, phosphorylated-STAT3 (p-STAT3), STAT3, Bcl-2, Bax, cleaved caspase-3(CC3) were assessed using ELISA and western blot, respectively. To study the mechanism, HGF small interfering ribonucleic acid (siRNA) and c-Met inhibitor, su11274, were administered intracerebroventricularly (i.c.v.) or intranasally, respectively. The concentration of HGF in the serum was increased significantly after MCAO. Brain expression of HGF was increased after MCAO and peaked at 3 days after recanalization. HGF and c-Met were both co-localized with neurons. Compared to rats received permanent MCAO, delayed recanalization after MCAO decreased the infarction volume, inhibited neuronal apoptosis, and improved neurobehavioral function, increased expressions of p-STAT3 and its downstream Bcl-2. Mechanistic studies indicated that HGF siRNA and su11274 reversed the neuroprotection including anti-apoptotic effects provided by delayed recanalization. In conclusion, the delayed recanalization after MCAO increased the expression of HGF in the brain, and reduced the infarction and neuronal apoptosis after MCAO, partly via the activation of the HGF/c-Met/STAT3/Bcl-2 signaling pathway. The delayed recanalization may serve as a therapeutic alternative for a subset of ischemic stroke patients.


Asunto(s)
Apoptosis/fisiología , Factor de Crecimiento de Hepatocito/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Infarto de la Arteria Cerebral Media/patología , Accidente Cerebrovascular Isquémico/patología , Masculino , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología
12.
Curr Neuropharmacol ; 18(12): 1237-1249, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32469699

RESUMEN

It is well-known that stroke is one of the leading causes of death and disability all over the world. After a stroke, the blood-brain barrier subsequently breaks down. The BBB consists of endothelial cells surrounded by astrocytes. Microglia, considered the long-living resident immune cells of the brain, play a vital role in BBB function. M1 microglia worsen BBB disruption, while M2 microglia assist in repairing BBB damage. Microglia can also directly interact with endothelial cells and affect BBB permeability. In this review, we are going to discuss the mechanisms responsible for the dual role of microglia in BBB dysfunction after stroke.


Asunto(s)
Barrera Hematoencefálica , Accidente Cerebrovascular , Astrocitos , Células Endoteliales , Humanos , Microglía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA