Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 153: 109836, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147177

RESUMEN

Pseudomonas plecoglossicida is one of most important pathogenic bacterial species in large yellow croaker and several other commercially valuable fish species. In our previous study, a GacS deficient mutant (ΔgacS) was constructed and its virulence showed substantially attenuated. In present study, the safety, immunogenicity and protective effect of the ΔgacS were evaluated in large yellow croaker as a live-attenuated vaccine candidate. It was shown that the ΔgacS strain exhibited good safety to large yellow croaker and there was no mortality or clinical symptoms observed in all fish that infected by ΔgacS strain with the doses range from 2 × 105~107 CFU per fish via intraperitoneal injection (IP) or immersion (IM), and almost all bacteria were cleaned up in the spleen of the fish at 14-day post infection. Specific antibodies could be detected at 7-day and 14-day post infection by direct agglutination method, and the valences of antibodies and bactericidal activities of the serum were significant increased with vaccination doses and vaccination time. Moreover, the expressions of some molecules and cytokines involved in specific immune responses were detected in the ΔgacS strain immunization group and control group. After challenged by the wild-type (WT) strain XSDHY-P, the relative percentage survival (RPS) showed highly correlated with the immunized dosage regardless of vaccination methods. It showed that the RPS of the IP groups were 39.47 %, 57.89 %, 71.05 % with the immune dosage in a descending order, respectively, and the RPS of the IM groups were 26.31 %, 36.84 %, 76.31 % with the immune dosage in a descending order, respectively. In summary, the ΔgacS strain exhibited safety and good protective effect to large yellow croaker and was a potential live vaccine candidate.


Asunto(s)
Enfermedades de los Peces , Perciformes , Infecciones por Pseudomonas , Pseudomonas , Vacunas Atenuadas , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Perciformes/inmunología , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación , Infecciones por Pseudomonas/veterinaria , Infecciones por Pseudomonas/prevención & control , Infecciones por Pseudomonas/inmunología , Pseudomonas/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunas contra la Infección por Pseudomonas/inmunología , Vacunas contra la Infección por Pseudomonas/genética , Inmunogenicidad Vacunal
2.
Pest Manag Sci ; 79(4): 1372-1380, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36453101

RESUMEN

BACKGROUND: Cryptocaryon irritans infestations on marine teleosts are a considerable burden on factory mariculture. Ultraviolet (UV) light can kill C. irritans under laboratory conditions. However, a rational method for using UV in factory aquaculture to control cryptocaryoniasis has not been developed. This study focused on evaluating the killing effect of UV on protomonts and tomonts of C. irritans and established an automatic UV parasiticide device for the prevention and control of cryptocaryoniasis in marine teleosts. RESULTS: The survival rate of protomonts and tomonts decreased with an increase in the UV irradiation dose. All the protomonts and tomonts died within 14 and 24 min, respectively. The lowest UV lethal doses of protomonts and tomonts of C. irritans were 2.0 × 106 and 3.5 × 106 µWs cm-2 , respectively. Exposure of protomonts and tomonts to lethal doses of UV radiation led to shrinkage and severe dissolution of the protoplasm, causing abnormal development of cells. The survival rate of artificially infected Larimichthys crocea (treatment group, group A) was 83.33% at the end of the test (day 14) after disinfection using the automatic UV parasiticide device, whereas that of the control group (group C) was 90.00% (p < 0.05). However, all artificially infected L. crocea without disinfection using the automatic UV parasiticide device (untreated group, group B) died on day 8. CONCLUSION: The automation of traditional physical methods conforms to the sustainable development of aquaculture and provides a theoretical reference for the prevention and control of cryptocaryoniasis in mariculture. © 2022 Society of Chemical Industry.


Asunto(s)
Infecciones por Cilióforos , Cilióforos , Enfermedades de los Peces , Perciformes , Animales , Antiparasitarios , Desarrollo Sostenible , Enfermedades de los Peces/prevención & control , Acuicultura , Automatización
3.
J Vet Pharmacol Ther ; 42(6): 602-608, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31529627

RESUMEN

Ceftiofur, a third-generation cephalosporin antibiotic, is being extensively used by pet doctors in China. In the current study, the detection method was developed for ceftiofur and its metabolites, desfuroylceftiofur (DCE) and desfuroylceftiofur conjugates (DCEC), in feline plasma. Then, the pharmacokinetics studies were performed following one single intravenous and subcutaneous injection of ceftiofur sodium in cats both at 5 mg/kg body weight (BW) (calculated as pure ceftiofur). Ceftiofur, DCE, and DCEC were extracted from plasma samples, then derivatized and further quantified by high-performance liquid chromatography. The concentrations versus time data were subjected to noncompartmental analysis to obtain the pharmacokinetics parameters. The terminal half-life (t1/2λz ) was calculated as 11.29 ± 1.09 and 10.69 ± 1.31 hr following intravenous and subcutaneous injections, respectively. After intravenous treatment, the total body clearance (Cl) and volume of distribution at steady-state (VSS ) were determined as 14.14 ± 1.09 ml hr-1  kg-1 and 241.71 ± 22.40 ml/kg, respectively. After subcutaneous injection, the peak concentration (Cmax ; 14.99 ± 2.29 µg/ml) was observed at 4.17 ± 0.41 hr, and the absorption half-life (t1/2ka ) and absolute bioavailability (F) were calculated as 2.83 ± 0.46 hr and 82.95%±9.59%, respectively. The pharmacokinetic profiles of ceftiofur sodium and its related metabolites demonstrated their relatively slow, however, good absorption after subcutaneous administration, poor distribution, and slow elimination in cats. Based on the time of drug concentration above the minimum inhibitory concentration (MIC) (T>MIC) calculated in the current study, an intravenous or subcutaneous dose at 5 mg/kg BW of ceftiofur sodium once daily is predicted to be effective for treating feline bacteria with a MIC value of ≤4.0 µg/ml.


Asunto(s)
Antibacterianos/farmacocinética , Gatos , Cefalosporinas/farmacocinética , Animales , Área Bajo la Curva , Femenino , Semivida , Inyecciones Intravenosas , Inyecciones Subcutáneas , Masculino , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...