Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 655, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253534

RESUMEN

The open-shell catalytically active species, like radical cations or radical anions, generated by one-electron transfer of precatalysts are widely used in energy-consuming redox reactions, but their excited-state lifetimes are usually short. Here, a closed-shell thioxanthone-hydrogen anion species (3), which can be photochemically converted to a potent and long-lived reductant, is generated under electrochemical conditions, enabling the electrophotocatalytic hydrogenation. Notably, TfOH can regulate the redox potential of the active species in this system. In the presence of TfOH, precatalyst (1) reduction can occur at low potential, so that competitive H2 evolution can be inhibited, thus effectively promoting the hydrogenation of imines. In the absence of TfOH, the reducing ability of the system can reach a potency even comparable to that of Na0 or Li0, thereby allowing the hydrogenation, borylation, stannylation and (hetero)arylation of aryl halides to construct C-H, C-B, C-Sn, and C-C bonds.

2.
Org Lett ; 25(42): 7633-7638, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37844204

RESUMEN

The chemical activation and functionalization of water are considered an ideal method for converting earth-abundant sources into valuable chemicals. Here, we show that a non-activated free water molecule can be applied directly as a hydrogen donor to achieve the carbanion-mediated alkene reduction with 9-HTXTF serving as an organophotocatalyst. Notably, direct syntheses of high-value-added drugs and bioactive molecules are readily achieved by utilizing plentiful energy and an earth-abundant resource, showcasing the usefulness of the protocol in chemical synthesis.

3.
Angew Chem Int Ed Engl ; 61(48): e202211562, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36107463

RESUMEN

Hydrogenation of alkenes is one of the most fundamental transformations in organic synthesis, and widely used in the petrochemical, pharmaceutical, and food industries. Although numerous hydrogenation methods have been developed, novel types of catalysis with new mechanisms and new hydrogen sources are still desirable. Thioxanthone (TX) is widely used in energy-transfer photoreactions, but rarely in photoredox processes. Herein we show that a catalytic amount of TfOH as a co-catalyst can tune the properties of TX to make it a photoredox catalyst with highly enhanced oxidative capability in the hydrogenation of carbonylated alkenes with the cheap petroleum industrial product p-xylene serving as the hydrogen source. Deuterium can also be introduced by this method by using D2 O as the D source. To the best of our knowledge, this is the first example of using p-xylene as a hydrogen source.


Asunto(s)
Alquenos , Hidrógeno , Hidrogenación , Alquenos/química , Hidrógeno/química , Electrones , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...